
Page 1 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

FlexiPanel

FlexiPanel Protocol 3.0
User Interface Services Layer for Bluetooth

Summary
The FlexiPanel Bluetooth Protocol is a remote user
interface service for computers, electrical
appliances and other machinery.

A FlexiPanel server resides on the application and
holds a user interface database that reflects the
appliance’s human-machine interface needs.

A FlexiPanel client can connect at any time, read
the database and displays the user interface. A
user may then control the application from the
client device. Using Bluetooth, the client can be
up to 330 feet away, without need for line-of-sight
communication. FlexiPanel clients have been
implemented on a range of PDAs and cellphones
and are freely available.

Like many higher-level protocols such as OBEX
file exchange, FlexiPanel sits on top of the
RFCOMM serial port emulation layer of the
Bluetooth protocol stack (see graphic below). It is
not part of the “official” Bluetooth standard.
However, the standard is relatively open in that
anyone is free to create FlexiPanel clients, and
FlexiPanel server licenses are modest.

Creators of FlexiPanel Servers must pay a license fee.
Creators of FlexiPanel Clients need not.

Contact us for details and refer to Legal Notices section.

The types of control that may be created, and the
underlying data types they represent, are listed in
the table below. Under the hood, the FlexiPanel

Protocol is based on just a few basic types of
message passed between client and server –
these are the core of the protocol described in this
document.

The main differences between the FlexiPanel
Protocol and regular user interface services (such
as Microsoft Windows) are:

Client Device Independence: The nature of the
client’s user interface may be unknown. The
controls displayed will always be logically correct,
but appearances may vary between different client
devices, e.g. a cellphone and a PDA. If the client
device can be anticipated in advance, certain
additional preferences can be requested, such as
a particular control layout or keyboard accelerators.

Fail Safe Performance: The connection might be
broken at any time, for example if the client’s
batteries fail or the client goes out of range. The
appliance must enter a fail-safe state if connection
is lost at a critical moment.

Compact Server Code: FlexiPanel servers might
be very small, low cost microcontrollers.
Consequently system requirements on the server
side must be extremely lean and communication
very succinct. The remote client device takes over
as many responsibilities as possible. For example,
a server is not required to buffer any I/O,
manipulate any floating point numbers or make
any conversions between single-byte characters
and Unicode.

Control type Function / value
Button Single-press event
Latch, check box,
radio button

Binary value

Text Character string
Number Integer or fixed-point value
Matrix, chart 2-D array of numbers
Date, time Seconds to years
List box 1-of-n selection
Section, popup
menu

Arranges controls in a
hierarchy

Password Provides access control
Message box Alerts user
Blob Exchanges binary data
Files Exchanges files
Image Graphical image

Baseband

Link Manager, Link Controller & Radio

L2CAP

Logical Link Control

A
udio

RFCOMM

Serial Port Emulation

S
D

P
 S

ervice D
iscovery

FlexiP
anel

R
em

ote U
I

O
B

E
X

Appliance

Page 2 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

FlexiPanel Protocol 3.0

Summary ..1
Overview...3
Message Header ..4
Greetings From Client...6
Greetings From Server..7
Goodbye From Client ..8
Goodbye From Server...9
New Control Panel From Server...10
Control Update From Client..36
Control Update From Server ..40
Control Partial Update From Server ..44
Ping From Server...46
Ping From Client..47
Ping Reply From Server..48
Ping Reply From Client ...49
Acknowledge From Server ...50
Acknowledge From Client ..51
New Server ...52
Control Properties Update From Server ...53
Files From Server ..54
Files From Client ...55
Profile Request From Client ...56
Profile Data From Server ..57
Program Device ...58
Device-Specific Data From Client ..59
Device-Specific Data From Server...60
FlexiPanel Protocol Revision History..61
Protocol Errata History ...62
Glossary and Notation ..63
Legal Notices ...65
Contact Details ..65

Page 3 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Overview
The FlexiPanel protocol conveys user interface
information between a server, which needs to
interact with a user, and a client, which provides
the user interface on behalf of the server. Server
and client communicate by passing messages.

The FlexiPanel protocol transmits information
about the ‘logical’ user interface, for example that
a button or a list box is required. This information
is quite independent of the client it connects to.

In addition, the server may choose to send client-
specific information, for example the exact controls
to use and how these are laid out. It is not
required to do so.

The separation of the logical user interface from its
layout information keeps servers ‘future-proof’,
since if a new type of client is created, the user
interface will be useable, if not ideal.

Most clients have been developed in-house by
FlexiPanel Ltd. The publication of the protocol
happen was retrospective and its main purpose is
as a reference work for internal FlexiPanel use. It
is possible that key conceptual points have been
omitted because we have taken them for granted.
Let us know if you require clarification.

In addition, transcription errors are possible. If you
encounter an omission or error, please contact us
to let us know and to get full clarification. In this
way we can continually improve this document.

In all cases, stress-test your implementation of the
protocol either using a FlexiPanel client product
(for servers), or a FlexiPanel Designer simulation
(for clients).

Message Based Protocol

Server and client communicate by passing one-
way messages. These do not necessarily require
a response or an acknowledgement.

Messages always begin with a 20-byte header
detailing the message contents. This is followed
by additional information if the message requires it.

Data Transmission

No error correction has been incorporated into the
protocol because it is assumed that this will be
managed by lower levels of the Bluetooth protocol.

All values are little-endian. For example, the
Button control type is 0x0042; this is transmitted
as the byte 0x42 followed by the byte 0x00.

The server may choose to use Unicode or ASCII
characters to convey text. However, it must
choose one or the other, it may not interchange
them.

Page 4 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Message Header
All messages begin with a 20 byte header.

Data Contains
char[8] FlexiPanel identifier
uint16 Serial number
uint16 Message checksum
uint16 Protocol version number
uint16 Backward compatibility version number
uint16 Message type
uint16 Flags

FlexiPanel identifier

The byte values 0x48, 0xEF, 0xF0, 0x74, 0x72,
0xEF, 0xE6, 0x66. These allow the message
parser to re-sync easily in the event of a
synchronization error.

Serial number

Identifies the message source. A client may
optionally identify itself as follows:

Constant Message
0x0000 Unspecified
0x0100 FlexiPanel Client for Pocket PC
0x0200 FlexiPanel Client for Windows
0x0300 FlexiPanel Client for Smartphone
0x0400 FlexiPanel Client for Java Phones
0x0500 FlexiPanel Client for Windows API
0x0600 FlexiPanel Client for Palm

Servers are primarily identified by their title. They
may optionally use the serial number to further
identify the batch or serial number as desired.

Message verification

Message verification by checksum may be
implemented. The checksum is optional and,
since lower levels of the Bluetooth stack usually
contains error correction, generally superfluous.

The calculation of the checksum is defined as
follows: The checksum value should be such that
when all even bytes in the message, header and
body, are added together, the lowest eight bytes of
the result will be zero. Likewise for all odd bytes.

There are two limitations to the checksum system.
First, checksum verification requires the entire
message to be read. However, data indicating the
length of the message may themselves be
corrupted which may cause storage problems.
Second, if the error is due to a bug in the remote
device, the checksum will be correct anyway. For
both these reasons, a server or client may choose
to reject a message simply because the memory
required to read in the message is so large the
resources are not available.

Protocol version number

Identifies the FlexiPanel protocol version number
implemented on the sender. The value should be
the same for all messages sent. This number
increases in new product releases as the protocol
definition changes:

Constant Version
0x0001 FlexiPanel 2.x
0x0002 FlexiPanel 3.x

Backward compatibility version
number

Identifies the lowest FlexiPanel protocol version
which should be backwardly-compatible with this
all messages from this device. The value should
be the same for all messages sent from the
device. Constants are the same as for the
protocol version number.

If the message receiver’s protocol number is lower
than this value the message will be ignored (as of
version 3.0) and, if the receiver is a client, it will
inform the user to upgrade their software.

Message Type

Integer identifying the type of message contained
in the message body.

Constant Message
0x0001 Greetings from client
0x0002 Greetings from server
0x0004 Goodbye from client
0x0005 Goodbye from server
0x0006 New control panel from server
0x0007 Control update from client
0x0008 Control update from server
0x0009 Ping from server

Page 5 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Constant Message
0x000A Ping from client
0x000B Ping reply from server
0x000C Ping reply from client
0x000D Acknowledge from server
0x000E Acknowledge from client
0x000F New server
0x0010 Control properties update from server
0x0011 Files from server
0x0012 Profile request from client
0x0013 Profile data from server
0x0081 Program control panel
0x0082 Program host

Flags

OR-able values identifying specific features about
the message sender:

Constant Meaning if set
0x0001 Unicode text strings
0x0002 Pings not supported
0x0004 Acknowledge not supported
0x0008 Acknowledge requested
0x0010 One-shot server
0x0020 Checksum field is valid
0x0040 Image controls can generate update

messages when clicked on

The server specifies whether communication is
Unicode (16-bit characters) or ASCII (8-bit
characters). Clients must be prepared to handle
both. The server must stick to one or the other,
not switch between them, and the client must
follow: i.e. all Unicode flags in messages headers
and control blocks from the same server must be
the same and the client must reply in the same
format.

One-shot servers disconnect immediately after
sending the New Control Panel From Server
message. The data cannot be modified by the
client and re-transmitted to the server. Unlike
usual disconnection, the client should continue to
display the controls after disconnection until
dismissed by the user.

Worked example

A FlexiPanel Client for Pocket PC 3.0 sends a
Unicode Goodbye from Client message as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Pocket PC Client identifier
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
04,00 Goodbye message ID
01,00 Flags – Unicode flag only

Page 6 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Greetings From Client
The Greetings From Client message tells a server
that a client has connected over the Bluetooth link.
It should be sent when a client first connects to a
server or if a New Server message is received.

The Greetings From Client message initiates a
FlexiPanel client/server link. It is sent as a header
with message constant 0x0001 and no body.

In response to a Greetings From Client message,
a server should send a Greetings From Server
message in confirmation. It will almost certainly
then send a New Control Panel From Server
message.

A server shouldn’t be concerned if it receives two
Greetings From Client messages, since one may
be due to usual connecting and one may be in
response to an earlier New Server message that
got stuck in a buffer somewhere.

The Greetings From Client message was
implemented in protocol version 2.0 and remains
current.

Worked example

A FlexiPanel Client for Pocket PC 3.0 sends a
Unicode Greetings from Client as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Pocket PC Client identifier
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
01,00 Greetings message ID
01,00 Flags – Unicode flag only

Page 7 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Greetings From Server
The Greetings From Server message is a
response to the Greetings From Client message
and confirms that the device connected to is
indeed a compatable FlexiPanel device. It is sent
as a header with message constant 0x0002 and
no body.

The Greetings From Server message confirms the
initiation of a FlexiPanel client/server link. It is sent
as a header with message constant 0x0002 and
no body.

The Greetings From Server message should be
sent when a server receives a Greetings From
Client message. It will almost certainly then send
a New Control Panel From Server message.

The Greetings From Server message was
implemented in protocol version 2.0 and remains
current.

Worked example

A server sends a Unicode Greetings from Server
as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
02,00 Greetings message ID
01,00 Flags – Unicode flag only

Page 8 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Goodbye From Client
The Goodbye From Client message indicates that
a client wishes to terminate the FlexiPanel
client/server link. It is sent as a header with
message constant 0x0004 and no body.

No reply is required. Any reply received will be
ignored.

Either client or server may terminate a link. It may
also fail unannounced, e.g. if the client or server
lose power or go out of range. Ping functionality,
acknowledge functionality, or low-level
interrogation of the Bluetooth driver, should be
implemented in order to detect this condition and
treat it in a fail-safe manner.

The Goodbye From Client message was
implemented in protocol version 2.0 and remains
current.

Here is a worked example so you are sure you
understand it

Worked example

A FlexiPanel Client for Pocket PC 3.0 sends a
Unicode Goodbye from Client message as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Pocket PC Client identifier
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
04,00 Goodbye message ID
01,00 Flags – Unicode flag only

Page 9 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Goodbye From Server
The Goodbye From Server message indicates that
a server wishes to terminate the FlexiPanel
client/server link. It is sent as a header with
message constant 0x0005 and no body.

No reply is required. Any reply received will be
ignored.

Either client or server may terminate a link. It may
also fail unannounced, e.g. if the client or server
lose power or go out of range. Ping functionality,
acknowledge functionality, or low-level
interrogation of the Bluetooth driver, should be
implemented in order to detect this condition and
treat it in a fail-safe manner.

The Goodbye From Server message was
implemented in protocol version 2.0 and remains
current.

Worked example

A server sends a Unicode Goodbye from Server
as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
05,00 Goodbye message ID
01,00 Flags – Unicode flag only

Page 10 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

New Control Panel From
Server
The New Control Panel From Server sends a list of
controls to be displayed by the client.

The New Control Panel From Server message is
sent whenever a client first connects and
whenever the controls list of controls changes.
Minor changes to individual controls’ values and
properties do not require this message to be sent.

The New Control Panel From Server message was
implemented in protocol version 2.0 and remains
current.

The message starts with a header with message
constant 0x0006. The body that follows will vary
depending on the controls to be displayed.
However, the general format is guaranteed,
allowing client devices to ignore controls and/or
features it does not recognize or is not able to
support. The general format is:

DataSize Contains
uint32 number nCtl of Control Blocks to

follow
then nCtl Control Blocks

Control Block

The exact nature of a control block depends on the
type of control it is. However, all control blocks
conform to the following structure:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type CtlTyp as defined
below

uint32 Control Flags dwFlags as below
uint32 Control Unique ID
uint32 Size ValSz of control value field,

bytes
ValSz Control Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
signals the contents of the Descriptor

Block. Descriptor Blocks follow in the
same order as their identifiers

then nDsc Descriptor Blocks

Control Z-Order

Image controls are depicted behind any controls
which overlap them.

Control Type & Value

Each control has a value field whose contents may
be modified by client or server. Their size and
interpretation depend on the control type as
follows:

Control CtlTyp
constant

Control Value

Button 0x0042 Registers a button press
(only client can modify)

Text 0x0054 Zero terminated ASCII or
Unicode text

Latch 0x0047 Binary value encoded as
a byte 0x00 (false/off) or
0xFF (true/on)

Section 0x0053 Binary value encoded as
a byte 0x00 (open) or
0xFF (closed)

Date/
Time

0x0044 An 8-byte date-time field

Number 0x004E A 4-byte signed integer
(descriptors provide
decimal point adjustment)

Matrix 0x004D A 2-D array of 1-, 2- or 4-
byte integers; each row
may have label data

Password 0x0050 Binary value encoded as
a byte 0x00 (locked) or
0xFF (unlocked)

List 0x004C A 4-byte signed integer
indicating selection of
single item from list

Message 0x0058 Zero terminated ASCII or
Unicode message text

Blob 0x004F Unrestricted binary
transfer; primarily for
providing URL links

Files 0x0046 File transfer; primarily for
providing local HTTP file
service

Image 0x0049 Color image

Page 11 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Control Flags – Generic

The control flags are features of the field which are
bitwise OR-ed together to make the uint32 value.
Most flags are control-specific; however, the
following flags apply all controls:

Name /
dwFlags constant

Contains

CTL_INVISIBLE
0x00000001

Control is not visible

CTL_RIGHTTOLEFT
0x00000002

Right-to-left text (i.e. Arabic
style) preferred if possible

CTL_UNICODE
0x00000004

Text is Unicode (16-bit)
rather than ASCII. Must be
same as message header

CTL_STARTGROUP
0x00000008

Control is start in a logical
group which should be
displayed together

CTL_
ENSUREVISIBLE
0x00000010

If control is not currently
visible, make it visible now.
(Only really applies in
Control Properties Update
messages)

CTL_ENDGROUP
0x00000020

Control is the last in a
logical group which should
be displayed together

CTL_COLCHANGED
0x00000040

(Only really applies in
Control Properties Update
messages).

Control flags are generally fixed throughout the life
of a control. The following may change in a
Control Properties Update From Server message:

• CTL_INVISIBLE may change to hide or show

a control.

• CTL_ENSUREVISIBLE may be set to request
that a control be brought into view.

• CTL_MSG_ICON_ flags.

• CTL_MSG_RESP_ flags.

• If the color is to be changed, the
CTL_COLCHANGED flag should be set.

Control Unique ID

The control unique ID should be the only control
that the server provides with that ID. In a client /
server environment it possible that the client sends
an update message relating a control which has

since ceased to apply. The unique ID ensures that
an update message can be applied to the control
to which it was intended or, if no longer applicable,
ignored. The ID should not be 0x00000000 nor
greater than 0xFFFFFFF0.

Control Descriptor

Control-specific descriptors contain the remaining
information required by a particular control. Each
descriptor block consists of:

DataSize Contains
uint32 Size nDsc of descriptor block
nDsc Descriptor data

Descriptor blocks may come in any order but must
follow the same order as they appear in the
Descriptor Identifier Header. Most descriptors are
optional; some, however, are required – generally
those that indicate the size of other data elements.

Although the Descriptor Identifier values are
printable ASCII characters, the Descriptor Identifier
Header is not expected to contain a zero
terminator – all Descriptor Identifier values should
have a meaning.

The structure of the different control blocks will
now be described. A worked example of an entire
New Control Panel From Server message the
follows right at the end of this section.

Button Control Block

The Button Control is usually represented on a
client as a button. It has no retained state as such
but is a user-initiated event, i.e. the button is
pressed. The event is communicated from client
to server as a Control Update From Client
message, which is always associated as a press
event. A Control Update From Server message for
a button would be meaningless.

The Button Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0042

Page 12 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

uint32 Generic control flags plus Button Flags
described below

uint32 Control Unique ID
uint32 Control Value Size, value

0x00000001
0x01 Button Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Button Value

The button value is a single byte although the
value is ignored.

Button Flags

The following control flags are specific to the
button control and may also only apply to certain
servers:

Name /
dwFlags constant

Meaning

CTL_BTT_RESET
0x00010000

Entire server product
should reset when button
pressed

Name Descriptor Block

The Name Descriptor Block defines the title text
that appears on the button. It is not actually
required but the button may be nameless without it.
The Descriptor Identifier used to indicate the Name
Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Button name in ASCII or Unicode as

specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends a Unicode “Reset Host” button
control block as follows:

Bytes in order of
transmission (hex)

Meaning

2B,00,00,00 Size of fields to follow (43
bytes)

42,00 Control type, value 0x0042
04,00,01,00 Specifies control flags

CTL_BTT_RESET and
CTL_UNICODE

54,53,52,00 Control ID 0x00525354
01,00,00,00 Control value size = 1
00 Control value
02,00,00,00 2 descriptor identifiers

follow, 1 byte each
5A,63 Descriptor identifiers:

Name , followed by Color
0A,00,00,00 Size of name descriptor

data in bytes
52,00,65,00,73,
00,65,00,74,00

Text “Reset” in Unicode

04,00,00,00 Size of color descriptor
data in bytes

FF,00,00,00 Bright red button requested

Text Control Block

The Text Control stores variable length text up to a
maximum length. Single-byte (ASCII) and
Unicode text can be stored, although FlexiPanel
Clients may not know how to represent all Unicode
characters.

Page 13 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

The Text Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0054
uint32 Generic control flags plus Text Flags

described in this below
uint32 Control Unique ID
uint32 Control Value Size szTxtSz, equal to

the maximum number of bytes (not
characters) that can be stored,
including zero terminator.

szTxtSz Text Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Text Value

The text value is the current contents of the text
control including zero terminator. This may be
ASCII or Unicode, according to the Control Flags.
szTxtSz bytes are transmitted, which must be
equal to or less than the number of bytes specified
in the Length Descriptor Block.

Text Flags

The following control flags are specific to the text
control:

Name /
dwFlags constant

Meaning

CTL_TXT_
MODIFIABLE
0x00010000

Text may be modified by the
client, e.g. by providing an
edit text control

CTL_TXT_
PASSWORD
0x00020000

Modifiable text should have
secure entry, e.g. a password
style edit control

Name Descriptor Block

The Name Descriptor Block defines the title text
which describes what the text data represents. It
is not required but from version 2.3 it is expected
as a way to describe the information the control
represents. The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Text control name in ASCII or Unicode

as specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Length Descriptor Block

The Length Descriptor Block is the maximum
length in bytes that the text is permitted to be,
including zero terminator and must be equal or
greater than szTxtSz. It is required. The
Descriptor Identifier used to indicate the Length
Descriptor Block is 0x6D.

DataSize Contains
uint32 Length size, value 0x00000004
0x04 szTxtSz

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends a Unicode editable text control
block, maximum 4 characters (=(4+1)*2=10 bytes),
current value “Hi”, as follows:

Page 14 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Bytes in order of
transmission (hex)

Meaning

36,00,00,00 Size of fields to follow (54
bytes)

54,00 Control type, value
0x0054

04,00,01,00 Specifies control flags
CTL_TXT_MODIFIABLE
and CTL_UNICODE

54,58,54,00 Control ID 0x00545854
16,00,00,00 Control value size = 10
48,00,69,00,00,
00,00,00,00,00

Control value “Hi” in zero
terminated Unicode

02,00,00,00 2 descriptor identifiers
follow, 1 byte each

5A,6D Descriptor identifiers:
Name, followed by Length

08,00,00,00 Size of name descriptor
data in bytes

54,00,65,00,78,
00,74,00

Text “Text” in Unicode

04,00,00,00 Size of length descriptor
data in bytes

0A,00,00,00 Length 10 bytes

Latch Control Block

The Latch Control Block stores a binary on/off
value. It would usually be represented by a check
box or radio button but other representations are
possible. For example, the Pocket PC has a
‘Momentary Button’ representation whose state is
on only while the button is pressed.

The Latch Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0047
uint32 Generic control flags plus Latch Flags

described below
uint32 Control Unique ID
uint32 Control Value Size, value

0x00000001
0x01 Latch Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes

nDsc Control Descriptor Header, one byte
per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Latch Value

The latch value is a single byte. 0x00 represents
off and 0xFF represents on.

Latch Flags

The following control flags are specific to the latch
control:

Name /
dwFlags constant

Meaning

CTL_LCH_
RADIORESET
0x00010000

Radio button has reset
behavior (see below)

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the latch control value
represents. For example, a check box uses this as
the text to place next to the check square. The
Descriptor Identifier used to indicate the Name
Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Latch control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Radio Button Descriptor Block

The Radio Button Descriptor block requests radio
button behavior. The block describes a value
called the Radio Group ID. This is interpreted as
follows:

Page 15 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

- If the Radio Button Descriptor Block is absent

or the Radio Group ID value is zero, normal
latch control behavior is assumed.

- If the Radio Group ID value is non-zero, all

other latch controls with the same Radio
Group ID should be placed in the off state
when this latch enters the on state.

- If the Radio Group ID value is non-zero and

the CTL_LCH_RADIORESET flag is set, all
latch controls with the same Radio Group ID
(including itself), should be placed in the off
state when this latch enters the on state.
Thus this control never stays in the on state
when pressed and its only function is to turn
off all others.

The Descriptor Identifier used to indicate the Radio
Button Descriptor Block is 0x72.

DataSize Contains
uint32 Radio Group ID size, value

0x00000004
0x04 Radio Group ID.

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an off Unicode “Radio 1” Radio
Button latch control block as follows:

Bytes in order of
transmission (hex)

Meaning

30,00,00,00 Size of fields to follow (48
bytes)

42,00 Control type, value 0x0042
04,00,01,00 Specifies control flags

CTL_LCH_RADIORESET
and CTL_UNICODE

54,53,52,00 Control ID 0x00525354
01,00,00,00 Control value size = 1
00 Control value (off)
03,00,00,00 3 descriptor identifiers

follow, 1 byte each
5A,72,63 Descriptor identifiers:

Name , Radio Group, Color
0E,00,00,00 Size of name descriptor

data in bytes
52,00,61,00,64,
00,69,00,6F,00,
20,00,31,00

Text “Radio 1” in Unicode

04,00,00,00 Size of color descriptor
data in bytes

FF,00,00,00 Bright red latch requested

Section Control Block

The Section Control Block stores a binary
open/closed value relating to “child controls” which
are only communicated and displayed when the
section control is open. It is used to reduce
communication overload and display real estate.

A change of state of a section control would
usually result in the server sending a New Control
Panel From Server message; however, it entirely
up to the server which controls are displayed in
each state. From the client’s perspective, the
control is logically the same as a latch control but
will probably be displayed differently.

The Section Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0053
uint32 Generic control flags plus Section

Flags described below
uint32 Control Unique ID
uint32 Control Value Size, value

0x00000001
0x01 Section Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that

Page 16 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Section Value

The section value is a single byte. 0x00
represents closed and 0xFF represents open.

Section Flags

The following control flags are specific to the
section control:

Name /
dwFlags constant

Meaning

CTL_SCT_
AUTOCLOSE
0x00010000

Server always returns the
Section control to the
closed state when a client
disconnects

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the section contains. For
example, a section containing controls which are
used for rarely modified settings might be named
“Settings…” The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Section control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an open, automatically closing,
ASCII “Settings” section control block as follows:

Bytes in order of
transmission (hex)

Meaning

20,00,00,00 Size of following fields (32
bytes)

53,00 Control type, value 0x0053
00,00,01,00 Specifies control flag

CTL_SCT_AUTOCLOSE
54,45,53,00 Control ID 0x00534554
01,00,00,00 Control value size = 1
FF Control value (open)
01,00,00,00 1 descriptor identifier

follows, 1 byte long
5A Descriptor identifier: Name
08,00,00,00 Size of name descriptor

data in bytes
53,65,74,74,69,
6E,67,73

Text “Settings” in ASCII

Date-Time Control Block

The Date-Time Control Block stores an 8-byte
Date-Time value. It would usually be represented
by formatted text or by Date and Time controls.

The Date-Time control is a little unusual in that
both the server and client may wish to update the
control at once. The situation arises because a
real-time clock date-time control will be updated by
the server every second. At the same time, the
client may wish to set the clock time. Client
software needs to ignore server updates while the
client is in the process of modifying the value: real-
time clock date-times controls should be tested
when designing a FlexiPanel client.

The Date-Time Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

Page 17 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0044
uint32 Generic control flags plus Date-Time

Flags described below
uint32 Control Unique ID
uint32 Control Value Size, value

0x00000008
0x08 Date-Time Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Date-Time Value

The 8-byte Date-Time value consists of the
following fields:

Datatype Contains Range
byte Second 0 – 59
byte Minute 0 – 59
byte Hour 0 – 23
byte Date 1 – 31
byte Day of week 0 – 6 Sunday to

Saturday respectively
7 = Unknown

byte Month 1 – 12
uint16 Year 0 – 65535

Depending on the interpretation of the control, not
all Date/Time fields need be valid. For example, a
date-time field may represent a birthday, in which
case only date and month would be valid; an alarm
time, in which hour and minute are valid, etc.

Date-Time Flags

The following control flags are specific to the date-
time control:

Name /
dwFlags constant

Meaning

CTL_DTM_
MODIFIABLE
0x00010000

At least one Date-time field
is modifiable (must be
specified in addition to
other modifiable flags)

CTL_DTM_
MODIFYSECS
0x00020000

The seconds field is
modifiable

CTL_DTM_
MODIFYMINS
0x00040000

The minutes field is
modifiable

CTL_DTM_
MODIFYHOURS
0x00080000

The hours field is
modifiable

CTL_DTM_
MODIFYWEEKDAY
0x00100000

The weekday field is
modifiable. (Should not be
set if any of date, month or
year are modifiable.)

CTL_DTM_
MODIFYDAY
0x00200000

The date field is modifiable

CTL_DTM_
MODIFYMONTH
0x00200000

The month field is
modifiable

CTL_DTM_
MODIFYYEARS
0x00200000

The year field is modifiable

CTL_DTM_
REALTIMECLOCK
0x01000000

The date-time value is a
real-time clock, i.e. the
server will advance the
value to keep time

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the date-time control value
represents. The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Date-Time control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Page 18 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Format Descriptor Block

The Format Descriptor block expresses a
preference as to how the date-time value is
displayed as a text string. A client is not required
to do so; in particular, it may not be practical for
modifiable controls. The format descriptor is
interpreted as the string of text to be displayed,
after the following substitutions have been made:

Text in
format string

Value substituted

%H% Hour (24 hour, 1 or 2 digits)
%HH% Hour (24 hour, 2 digits always)
%h% Hour (12 hour, 1 or 2 digits)
%hh% Hour (24 hour, 2 digits always)
%m% Minute (1 or 2 digits)
%mm% Minute (2 digits always)
%s% Second (1 or 2 digits)
%ss% Second (2 digits always)
%d% Date (1 or 2 digits)
%dd% Date (2 digits always)
%ddd% Day of week (3 letter abbreviation)
%dddd% Day of week (whole word)
%M% Month (1 or 2 digits)
%MM% Month (2 digits always)
%MMM% Month (3 letter abbreviation)
%MMMM% Month (whole word)
%yy% Year (2 digits)
%yyyy% Year (all digits)
%t% A or P (for AM or PM)
%tt% AM or PM

For example, to display the time

Mon, 9 Jun, 8:45 PM

use the format descriptor

%ddd%, %d%. %MM%, %h%:%mm%%t%

The Descriptor Identifier used to indicate the
Format Descriptor Block is 0x66.

DataSize Contains
uint32 Size nFmt of Format String in bytes
nFmt Format String in ASCII or Unicode as

specified in message header.

The format string may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nFmt

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an ASCII modifiable real-time date-
time control block with format HH:MM named
“Time” as follows:

Bytes in order of
transmission (hex)

Meaning

3A,00,00,00 Size of fields to follow (58
bytes)

44,00 Control type, value 0x0044
00,00,0D,01 Specifies control flags

CTL_DTM_MODIFIABLE,
CTL_DTM_MODIFYMINS,
CTL_DTM_MODIFYHOURS
and CTL_DTM_
REALTIMECLOCK

45,4D,49,54 Control ID 0x54494D45
08,00,00,00 Control value size = 8
21,2D,0D,11,
03,0B,D4,07

Control value 13:45:33,
date Wed, 17 Nov 2004

03,00,00,00 3 descriptor identifiers
follow, 1 byte each

5A,66,63 Descriptor identifiers:
Name, Format, Color

04,00,00,00 Size of name descriptor
data in bytes

54,69,6D,65 Text “Time” in ASCII
09,00,00,00 Size of format string in

bytes
25,48,48,25,3A,
25,4D,4D,25

Text “%HH%:%MM%” in
ASCII

04,00,00,00 Size of color descriptor
data in bytes

FF,00,00,00 Bright red latch requested

Page 19 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Number Control Block

The Number Control Block stores a 4-byte signed
integer, i.e. in the range –2,147,483,648 to
+2,147,483,647. It is usually represented as
numerical text, possibly with spin or slider controls
for data entry.

A Mantissa (decimal-shifting) descriptor value
allows the value to represent fixed-point non-
integer values. However, if such a decimal shift
operation is specified, the number value (and
related values such as minimum and maximum
values) are expressed in terms of the underlying 4-
byte signed integer value.

The Number Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x004E
uint32 Generic control flags plus Number

Flags described below
uint32 Control Unique ID
uint32 Control Value Size, value

0x00000004
0x04 Number Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Number Value

The Number value is a 4-byte integer, transmitted
least significant byte first (as are all multi-byte
integers in FlexiPanel).

Number Flags

The following control flags are specific to the
number control:

Name /
dwFlags constant

Meaning

CTL_NUM_
MODIFIABLE
0x00010000

Number is modifiable

CTL_NUM_MIN
0x00020000

Number has a minimum
permitted value

CTL_NUM_MAX
0x00040000

Number has a maximum
permitted value

CTL_NUM_FLOAT
0x00000000

Use printf %.lf style
formatting (floating point)

CTL_NUM_
FIXEDPOINT
0x00010000

Use printf %.nnlf style
formatting (fixed point)

CTL_NUM_
EXPONENT
0x00020000

Use printf %.nnle style
formatting (base-10
exponent e.g. 1E8 for 108)

CTL_NUM_
FIXEDPOINT
0x00030000

Use printf %.nnlg style
formatting (shortest of
above three)

Exactly one of CTL_NUM_FLOAT, CTL_NUM_
FIXEDPOINT, CTL_NUM_EXPONENT and CTL_
NUM_FLOAT should be specified.

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the number control value
represents. The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Number control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Format Descriptor Block

The Format Descriptor block expresses a
preference as to how the number value is
displayed as a text string. A client is not required

Page 20 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

to do so; in particular, it may not be practical for
modifiable controls. The format descriptor is
interpreted as the string of text to be displayed,
after the %% value has been replaced with the
current number value. For example, to display

$7.99c

use the format descriptor

$%%c

The Descriptor Identifier used to indicate the
Format Descriptor Block is 0x66.

DataSize Contains
uint32 Size nFmt of Format String in bytes
nFmt Format String in ASCII or Unicode as

specified in message header.

The format string may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nFmt

Minimum Value Descriptor Block

The Minimum Value Descriptor block specifies a
minimum allowable value that the number value
may take. Neither server nor client should permit
the value to go below the minimum value. The
Descriptor Identifier used to indicate the Minimum
Value Descriptor Block is 0x6E.

DataSize Contains
uint32 Minimum Value size, value 0x04
0x04 4-byte signed integer minimum value

Maximum Value Descriptor Block

The Maximum Value Descriptor block specifies a
maximum allowable value that the number value
may take. Neither server nor client should permit
the value to go above the maximum value. The
Descriptor Identifier used to indicate the Maximum
Value Descriptor Block is 0x78.

DataSize Contains
uint32 Maximum Value size, value 0x04
0x04 4-byte signed integer maximum value

Decimals Descriptor Block

The Decimals Descriptor block specifies the
number of decimal places which should be
displayed. This does not shift the decimal place of
the underlying number value, but how it is
displayed in terms of digits after any decimal point.
The Descriptor Identifier used to indicate the
Mantissa Descriptor Block is 0x64.

DataSize Contains
uint32 Decimals size, value 0x01
0x01 1-byte integer decimals value 0 to 127

Mantissa Descriptor Block

The Mantissa Descriptor block specifies a power
ten multiplier to use when displaying the number
value. For example, if the integer value is 42 and
the mantissa is 3, the displayed value is 42000. If
the mantissa is –2, the same number value would
be displayed as 0.42. The Descriptor Identifier
used to indicate the Mantissa Descriptor Block is
0x6D.

DataSize Contains
uint32 Mantissa size, value 0x01
0x01 1-byte signed integer -128 to 127

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an ASCII modifiable number
control block with minimum value 0, 2 fixed point
decimal places, -2 (hundredths) mantissa and
value 4.04 named “Num” as follows:

Page 21 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Bytes in order of
transmission (hex)

Meaning

3D,00,00,00 Size of fields to follow (61
bytes)

4E,00 Control type, value 0x004E
0D,00,13,00 Specifies control flags

CTL_NUM_MODIFIABLE,
CTL_NUM_MIN, and
CTL_NUM_FIXEDPOINT

54,00,00,00 Control ID 0x00000054
08,00,00,00 Control value size = 4
94,01,00,00 Control value 404
05,00,00,00 5 descriptor identifiers

follow, 1 byte each
5A,6E,64,6D,63 Descriptor identifiers:

Name, Minimum, Decimals,
Mantissa, Color

03,00,00,00 Size of name descriptor
data in bytes

4E,75,6D Text “Num” in ASCII
04,00,00,00 Size of minimum in bytes
00,00,00,00 Minimum value
01,00,00,00 Size of decimals in bytes
02 Decimals value
01,00,00,00 Size of mantissa in bytes
FE Mantissa value (-2)
04,00,00,00 Size of color descriptor

data in bytes
FF,00,00,00 Bright red latch requested

Matrix Control Block

The Matrix Control Block stores matrix of 4-byte
signed integers, i.e. a table of number values.
There are four basic types, based on what the X-
axis (i.e. the rows of the matrix) represent:

• A list matrix type has no X-axis information
associated with each row.

• A XY matrix type has an X-axis number value
information associated with each row.

• A labels matrix type has a text label associated
with each row.

• A date-time matrix type has a date-time value
associated with each row.

As a minimum, a client must be able to display the
data as a table of numbers, even if it is able to
display it in other ways, too. Matrix controls are
demanding of client UI capabilities so a server

should expect nothing better than this, particularly
on devices such as cellphones.

However, a good client would offer many
possibilities which would be specified in the
device-specific profiles. From FlexiPanel Protocol
3.0, the following styles are rendered by default
where possible:

• A table of numbers for the list matrix type.

• A points chart for the XY matrix type.

• A column chart for the labels matrix type.

• A line chart for the date-time matrix type.

The Matrix Control Block was implemented in
protocol version 2.2 and remains current. From
version 3.0, a server may update a single row in a
message. In no version may the client modify the
data.

The control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x004D
uint32 Generic control flags plus Matrix Flags

described below
uint32 Control Unique ID
uint32 Control Value size, value mSiz
mSiz Matrix Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Matrix Value

The matrix value size mSiz will be implied by the
number of rows and columns and the type of data
required to represent the X axis. The matrix value
comprises of the following fields:

• The matrix of integers ‘unwrapped’ into a linear
array. All the values in the first column come

Page 22 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

first, then the next column, etc. Each column
of values is known as a Column Sub-Array.
Each integer will be signed but may be 1- 2- or
4-byte depending on the matrix flags.

• If the matrix is of the List matrix type, no X-axis
data is sent.

• If the matrix is of the XY matrix type, the X-axis
values are sent as an array of signed integers
which may be 1- 2- or 4-byte depending on the
matrix flags.

• If the matrix is of the Labels matrix type, the X-
axis text values are sent as a Zero
Interspersed String List (see Error! Reference
source not found., page Error! Bookmark
not defined.). A client must infer the size of
the list from the overall size of the Matrix
Value, mSiz.

• If the matrix is of the Date-Time matrix type,
the X-axis Date-Time values are sent as an
array of 8-byte Date-Time values (see Date-
Time Control Block, page 16).

• An four byte signed integer NumValid
indicating the number of rows of the matrix
which contain valid data and whether it must
be interpreted as an offset circular array:

- If NumValid is zero or positive, the first
NumValid rows contain valid data and
the rest are unspecified.

- If NumValid is negative, all rows contain
valid data. The row elements of the
matrix have been offset and row R of the
matrix is located at Column Sub-Array
element offset E, where

 E = (R – NumValid) % NumRows

and NumRows is the total number of rows
in the matrix. E and R are zero-based; %
is the modulus operator; NumValid may
be no more negative than –NumRows. If
XY style or Date-Time style, this offset
applies to the row data, too. (It does not
apply to row labels in the Labels style.)

Matrix Flags

The following control flags are specific to the
matrix control:

Name /
dwFlags constant

Meaning

CTL_MTX_DATA_
LIST
0x00000000*

Matrix is List type (no X
data)

CTL_MTX_DATA_XY
0x00010000*

Matrix is XY type (X values
are Number values)

CTL_MTX_DATA_
LABELS
0x00020000*

Matrix is Labels type (X
values are text labels)

CTL_MTX_DATA_TY
0x00030000*

Matrix is Date-Time type (X
values are Date-Time)

CTL_MTX_X_4BYTE
0x00000000**

(XY type only) X values are
4-byte signed integers

CTL_MTX_X_2BYTE
0x00040000**

(XY type only) X values are
2-byte signed integers

CTL_MTX_X_1BYTE
0x00080000**

(XY type only) X values are
1-byte signed integers

CTL_MTX_Y_4BYTE
0x00000000†

Y values are 4-byte signed
integers

CTL_MTX_Y_2BYTE
0x00100000†

Y values are 2-byte signed
integers

CTL_MTX_Y_1BYTE
0x00200000†

Y values are 1-byte signed
integers

CTL_NUM_X_FLOAT
0x00000000††

(XY type only) Use
printf %.lf style formatting
(floating point) for X integer
data

CTL_NUM_X_
FIXEDPOINT
0x00400000††

(XY type only) Use
printf %.nnlf style
formatting (fixed point) for
X number values

CTL_NUM_X_
EXPONENT
0x00800000††

(XY type only) Use
printf %.nnle style
formatting (base-10
exponent e.g. 1E8 for 108)
for X number values

CTL_NUM_X_
FIXEDPOINT
0x00C00000††

(XY type only) Use
printf %.nnlg style
formatting (shortest of
above three) for X number
values

CTL_NUM_Y_FLOAT
0x00000000‡

Use printf %.lf style
formatting (floating point)
for Y number values

CTL_NUM_Y_
FIXEDPOINT
0x01000000‡

Use printf %.nnlf style
formatting (fixed point) for
Y number values

CTL_NUM_Y_
EXPONENT
0x02000000‡

Use printf %.nnle style
formatting (base-10
exponent e.g. 1E8 for 108)
for Y number values

Page 23 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Name /
dwFlags constant

Meaning

CTL_NUM_Y_
FIXEDPOINT
0x03000000‡

Use printf %.nnlg style
formatting (shortest of
above three) for Y number
values

CTL_MTX_ROW_
UPDATE
0x04000000

Server updates send a
single row of data at a time
(from version 3.0)

Exactly one of each group of flags marked *, **, †,
†† and ‡ should be specified.

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the number control value
represents. The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Control name in ASCII or Unicode as

specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Row Count Descriptor Block

The Row Count Descriptor block specifies the
number of rows of data for which memory should
be allocated. Not all these rows need contain valid
data. This Descriptor Block is required. The
Descriptor Identifier used to indicate the Row
Count Descriptor Block is 0x6E.

DataSize Contains
uint32 Maximum Value size, value 0x04
0x04 4-byte integer NumRows number of

rows

Column Count Descriptor Block

The Column Count Descriptor block specifies the
number of columns of data for which memory
should be allocated. This Descriptor Block is
required. The Descriptor Identifier used to indicate
the Row Count Descriptor Block is 0x4E.

DataSize Contains
uint32 Maximum Value size, value 0x04
0x04 4-byte integer NumRows number of

rows

X Format Descriptor Block

(XY type only.) The X Format Descriptor block
expresses a preference as to how the X-axis
number values are displayed as a text strings.
The format descriptor is interpreted as the string of
text to be displayed, after the %% value has been
replaced with the current number value. For
example, to display

$7.99c

use the format descriptor

$%%c

The Descriptor Identifier used to indicate the
Format Descriptor Block is 0x66.

DataSize Contains
uint32 Size nFmt of Format String in bytes
nFmt Format String in ASCII or Unicode as

specified in message header.

The format string may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nFmt.

Y Format Descriptor Block

The Y Format Descriptor block expresses a
preference as to how the matrix number values are
displayed as a text strings. The format descriptor
is interpreted as the string of text to be displayed,
after the %% value has been replaced with the
current number value. For example, to display

$7.99c

use the format descriptor

$%%c

The Descriptor Identifier used to indicate the
Format Descriptor Block is 0x46.

DataSize Contains
uint32 Size nFmt of Format String in bytes

Page 24 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

nFmt Format String in ASCII or Unicode as
specified in message header.

The format string may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nFmt.

X Axis Title Descriptor Block

The X Axis Title Descriptor Block defines the X
Axis title text. The Descriptor Identifier used to
indicate the X Axis Descriptor Block is 0x61.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam X Axis name in ASCII or Unicode as

specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Y Axis Title Descriptor Block

The Y Axis Title Descriptor Block defines the Y
Axis title text. The Descriptor Identifier used to
indicate the Y Axis Descriptor Block is 0x41.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Y Axis name in ASCII or Unicode as

specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

X Decimals Descriptor Block

(XY type only.) The X Decimals Descriptor block
specifies the number of decimal places which
should be displayed for row values. This does not
shift the decimal place of the underlying number
value, but how it is displayed in terms of digits after
any decimal point. The Descriptor Identifier used
to indicate the Mantissa Descriptor Block is 0x64.

DataSize Contains
uint32 Decimals size, value 0x01
0x01 1-byte integer decimals value 0 to 127

X Mantissa Descriptor Block

The X Mantissa Descriptor block specifies a power
ten multiplier to use when displaying the row value.
For example, if the integer value is 42 and the
mantissa is 3, the displayed value is 42000. If the
mantissa is –2, the same number value would be
displayed as 0.42. The Descriptor Identifier used
to indicate the Mantissa Descriptor Block is 0x6D.

DataSize Contains
uint32 Mantissa size, value 0x01
0x01 1-byte signed integer -128 to 127

Y Decimals Descriptor Block

The Y Decimals Descriptor block specifies the
number of decimal places which should be
displayed for the matrix values. This does not shift
the decimal place of the underlying number value,
but how it is displayed in terms of digits after any
decimal point. The Descriptor Identifier used to
indicate the Mantissa Descriptor Block is 0x44.

DataSize Contains
uint32 Decimals size, value 0x01
0x01 1-byte integer decimals value 0 to 127

Y Mantissa Descriptor Block

The Y Mantissa Descriptor block specifies a power
ten multiplier to use when displaying the matrix
values. For example, if the integer value is 42 and
the mantissa is 3, the displayed value is 42000. If
the mantissa is –2, the same number value would
be displayed as 0.42. The Descriptor Identifier
used to indicate the Mantissa Descriptor Block is
0x4D.

DataSize Contains
uint32 Mantissa size, value 0x01
0x01 1-byte signed integer -128 to 127

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

Page 25 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example – List type

A server sends an list type ASCII matrix control
block with 1-byte integer values, 3 rows (only 2
valid), 2 columns, default formatting options, X
Axis title ‘Rows’, Y Axis title ‘Cols’, named “Chart”
as follows:

Bytes in order of
transmission (hex)

Meaning

3D,00,00,00 Size of fields to follow (61
bytes)

4D,00 Control type, value 0x004D
00,00,02,00 Specifies control flags

CTL_MTX_DATA_LIST,
CTL_MTX_Y_1BYTE

44,41,54,31 Control ID 0x31544144
0A,00,00,00 Control value size = 10

01,02,CD,
04,03,CD,

02,00,00,00

Control value
(col 0)
(col 1)
(no row-specific data)
(NumValid)

03,00,00,00 3 descriptor identifiers
follow, 1 byte each

5A,61,41 Descriptor identifiers:
Name, X Title, Y Title

05,00,00,00 Size of name descriptor
data in bytes

43,68,61,72,74 Text “Chart” in ASCII
04,00,00,00 Size of X Title in bytes
52,6F,77,73 X Title “Rows” in ASCII
04,00,00,00 Size of Y Title in bytes
43,6F,6C,73 Y Title “Cols” in ASCII

In the above table, the CD values represent
unused bytes and could be any value.

Worked example – XY / Date-Time type

A server sends an XY type ASCII matrix control
block with 1-byte integer values, 3 rows (all valid,
offset to start at row 2), 1 column, 2-byte row
values, default formatting options, no axis titles or
name specified, as follows. See Number Control
Block for worked example of formatting. The Date-

Time type follows the XY type except that the row
values are each 8-byte Date-Time values.

Bytes in order of
transmission (hex)

Meaning

15,00,00,00 Size of fields to follow (21
bytes)

4D,00 Control type, value 0x004D
00,00,0D,01 Specifies control flags

CTL_MTX_DATA_XY,
CTL_MTX_Y_1BYTE,
CTL_MTX_X_2BYTE

44,41,54,32 Control ID 0x32544144
0D,00,00,00 Control value size = 13

01,02,03,
01,00,02,00,03,
00,
FE,FF,FF,FF

Control value
(col 0)
(row / X values, 2 bytes
each)
(NumValid = -2)

00,00,00,00 0 descriptor identifiers
follow

Worked example – Labels type

A server sends an Labels type ASCII matrix
control block with 1-byte integer values, 3 rows (all
valid, offset to start at row 2), 1 column, row labels
‘One’, Two, ‘Three’, default formatting options, no
axis titles or name specified, as follows. (See
Number Control Block for worked example of
formatting.)

Bytes in order of
transmission (hex)

Meaning

2B,00,00,00 Size of fields to follow (43
bytes)

4D,00 Control type, value 0x004D
00,00,02,00 Specifies control flags

CTL_MTX_DATA_LABELS,
CTL_MTX_Y_1BYTE

44,41,54,32 Control ID 0x32544144
15,00,00,00 Control value size = 21

01,02,03,
4F,6E,65,00,
54,77,6F,00
54,68,72,65,65,
00,
FE,FF,FF,FF

Control value
(col 0)
(row labels as Zero
Interspersed String List, 2
bytes each)

(NumValid = -2)

00,00,00,00 0 descriptor identifiers
follow

Page 26 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Password Control Block

The Password Control Block stores a binary
open/closed value which the client can only put
into the open state by specifying the correct
password. If so configured, the password may be
modifiable once open.

Passwords provide a security function whose
primary use is to prevent unwanted access to a
user interface. A change of state of a password
control would usually result in the server sending a
New Control Panel From Server message;
however, it entirely up to the server what it does.

• The client cannot directly change the state of
the password control. It can only do so by
transmitting a password and the server
verifying it to be correct. The server never
transmits passwords.

• Some client devices (cellphones) can only
enter the digits 0-9 in passwords.

• In ASCII based systems, the maximum
password length is 33 characters. In Unicode
systems, it is 16 characters. (Zero terminator
not included.)

The Password Control Block was implemented in
protocol version 2.0 and remains current. The
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0050
uint32 Generic control flags plus Password

Flags described below
uint32 Control Unique ID
uint32 Control Value Size, 0x00000001
0x01 Control Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Password Value

The password control value is a single byte. 0x00
represents closed and 0xFF represents open.

Password Flags

The following control flags are specific to the
password control:

Name /
dwFlags constant

Meaning

CTL_PWD_
MODIFIABLE
0x00010000

Client is permitted to
change the password.

CTL_PWD_
AUTOCLOSE
0x00020000

Server always returns the
Password control to the
closed state when a client
disconnects

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the password relates to. The
Descriptor Identifier used to indicate the Name
Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Section control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Page 27 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Worked example

A server sends an open, automatically closing,
ASCII “Pwd” password control block as follows:

Bytes in order of
transmission (hex)

Meaning

1B,00,00,00 Size of following fields (27
bytes)

50,00 Control type, value 0x0050
00,00,02,00 Specifies control flag

CTL_PWD_AUTOCLOSE
50,77,64,00 Control ID 0x00647750
01,00,00,00 Control value size = 1
FF Control value (open)
01,00,00,00 1 descriptor identifier

follows, 1 byte long
5A Descriptor identifier: Name
03,00,00,00 Size of name descriptor

data in bytes
50,77,64 Text “Pwd” in ASCII

List Control Block

The List Control Block stores a 4-byte signed
integer, i.e. in the range –2,147,483,648 to
+2,147,483,647. It represents the current selected
item in a list, or -1 for no item selected.

A client may not modify the list items; it can only
choose which is selected. A server may modify
the list items, but only by sending a New Control
Panel From Server message.

The List Control Block was implemented in
protocol version 2.0 and remains current. Each
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x004C
uint32 Generic control flags plus List Flags

described below
uint32 Control Unique ID
uint32 Control Value Size, value

0x00000004
0x04 List Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes

nDsc Control Descriptor Header, one byte
per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

List Value

The List value is a 4-byte integer, transmitted least
significant byte first (as are all multi-byte integers
in FlexiPanel). It represents the current selected
item in a list (zero based, so the first item is 0), or -
1 for no item selected.

List Flags

The following control flags are specific to the
number control:

Name /
dwFlags constant

Meaning

CTL_ LST_
NONULLSELECT
0x00010000

No item selected is an
allowable state.

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the number control value
represents. The Descriptor Identifier used to
indicate the Name Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Number control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Item Count Descriptor Block

The Item Count Descriptor block specifies how
many items are in the list. The Descriptor Identifier

Page 28 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

used to indicate the Format Descriptor Block is
0x6E.

DataSize Contains
uint32 Item Count size, value 0x04
0x04 4-byte integer item count

Items Text Descriptor Block

The Items Text Descriptor block specifies the text
for each item in the list as a Zero Interspersed
String List (see Error! Reference source not
found., page Error! Bookmark not defined.).
The Descriptor Identifier used to indicate the
Minimum Value Descriptor Block is 0x49.

DataSize Contains
uint32 Items Text string list size, value

sizZISL
sizZISL Items Text Zero Interspersed String

List, ASCII or Unicode as previously
specified

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an ASCII list control block with item
values “One”, “Two”, Three”, the last is selected,
named “List” as follows:

Bytes in order of
transmission (hex)

Meaning

3B,00,00,00 Size of fields to follow (59
bytes)

4E,00 Control type, value 0x004E
00,00,00,00 No control flags specified
4C,69,73,74 Control ID 0x7473694C
04,00,00,00 Control value size = 4
02,00,00,00 Control value = 2

03,00,00,00 3 descriptor identifiers
follow, 1 byte each

5A,6E,49 Descriptor identifiers:
Name, Item Count, Items
Text

04,00,00,00 Size of name descriptor
data in bytes

4C,69,73,74 Text “List” in ASCII
04,00,00,00 Size of Item Count in bytes
03,00,00,00 Item Count
0E,00,00,00 Size of Items Text (14

bytes)

4F,6E,65,00,
54,77,6F,00
54,68,72,65,65,
00

List Items Text
(“One”)
(“Two”)
(“Three”)

Message Control Block

The Message Control Block stores a text message
which can be displayed at request of the server.
No response is necessarily expected from the
client, but the user should not be able to continue
to operate the user interface until the message is
dismissed. From version 3.0, the client may offer
the Windows standard Message Box response
buttons and will inform the server which was
pressed.

The message control information is sent in the
New Control Panel From Server and Control
Update From Server message. It is not displayed
until Control Properties Update From Server
message is sent with the CTL_INVISIBLE flag
not set.

The Message Control Block was implemented in
protocol version 2.0 and remains current. Each
message control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0058
uint32 Generic control flags plus Matrix Flags

described below
uint32 Control Unique ID
uint32 Control Value Size, nBytes

Page 29 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

nBytes Control Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Message Value

The control value is zero terminated text to appear
when the message is shown. The length in
characters must be less than or equal to the
maximum number of characters as specified in the
Characters Descriptor.

Message Flags

The following control flags are specific to the
message control:

Name /
dwFlags constant

Meaning

CTL_MSG_ICON_
NONE
0x00010000*

Display no icon.

CTL_MSG_ICON_
STOP
0x00020000*

Display Stop icon.

CTL_MSG_ICON_
EXCLAMATION
0x00030000*

Display Exclamation icon.

CTL_MSG_ICON_
QUESTION
0x00040000*

Display Question Mark
icon.

CTL_MSG_ICON_
INFORMATION
0x00050000*

Display Information icon.

CTL_RESP_NONE
0x00000000†

Do not generate a client
reply (specify this for pre-
version 3.0 compatibility.)

CTL_RESP_OK
0x00100000†

Display OK response
button.

CTL_RESP_
OKCANCEL
0x00200000†

Display OK, Cancel
response buttons.

CTL_RESP_ Display Retry, Cancel

RETRYCANCEL
0x00300000†

response buttons.

CTL_RESP_YESNO
0x00400000†

Display Yes, No response
buttons.

CTL_RESP_
YESNOCANCEL
0x00500000†

Display Yes, No, Cancel
response buttons.

CTL_RESP_ABORT
RETRYIGNORE
0x00600000†

Display Abort, Retry,
Ignore response buttons.

Exactly one of each group of flags marked * and †
should be specified.

Characters Descriptor Block

The Characters Descriptor Block specifies the
maximum number of characters of any message
used by that control, including zero terminator.
The value is characters, i.e. if the server is
Unicode, twice the number of bytes will be
required to store messages than characters
specified in the Character Descriptor Block. The
Descriptor Identifier used to indicate the
Characters Descriptor Block is 0x6D.

DataSize Contains
uint32 Characters size, value 0x00000004
0x04 Number of characters (not bytes),

including zero terminator.

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the message relates to. It may
be used in the title bar of the message box. The
Descriptor Identifier used to indicate the Name
Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Section control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Page 30 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Color Descriptor Block

A client is unlikely to do anything with a Color
Descriptor Block specified for a message control,
but there’s no harm in sending one.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends a Unicode “Busy!” message control
block as follows. The text buffer is large enough
for messages of up to 8 characters plus zero
terminator:

Bytes in order of
transmission (hex)

Meaning

31,00,00,00 Size of following fields (49
bytes)

58,00 Control type, value 0x0058
00,00,05,00 Specifies control flags

CTL_RESP_NONE and
CTL_MSG_ICON_
INFORMATION

4D,73,67,00 Control ID 0x0067734D
12,00,00,00 Control value size nBytes

= 18 bytes (nine Unicode
characters including zero
terminator)

42,00,75,00,
73,00,79,00,
21,00,00,00,
CD,CD,CD,CD,
CD,CD

Control value “Busy!” in a
buffer large enough for 8
characters. (CD values
could be anything.)

02,00,00,00 2 descriptor identifiers
follow of 1 byte each

5A,6D Descriptor identifiers:
Name, Characters

03,00,00,00 Size of name descriptor
data in bytes

4D,73,67 Name “Msg” in ASCII
04,00,00,00 Size of Characters in bytes
09,00,00,00 Characters, = nBytes / 2

In the above table, the CD values represent
unused bytes and could be any value.

Blob Control Block

The Blob Control stores a quantity of binary data.
It is intended primarily for the customized transfer
of data between specific servers. It may also be
used to pass a URL (i.e. web page address) to a
client. The client should then, if able, provide a
button which launches a web browser to retrieve
that web page.

A typical use of the blob control is to provide a link
to a corporate web site.

A client is not required to support the Blob control
but must continue to function without error if it
receives one.

The Blob Control Block was implemented in
protocol version 2.0 and remains current. Its use
for custom data transfer is not defined in any way.

Each control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x004F
uint32 Generic control flags plus Blob Flags

described below
uint32 Control Unique ID
uint32 Control Value Size sBlob, equal to

the number of binary data bytes.
sBlob Blob Value
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Blob Value

If the CTL_BLOB_HINT_URL blob flag is specified,
the value is a URL. This may be ASCII or
Unicode, according to the Control Flags. sBlob
bytes are always transmitted, regardless of current
size of the blob.

Page 31 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

If CTL_BLOB_TEXT is defined, the client may need
to convert the text to its native format (ASCII /
Unicode) before processing.

If the CTL_BLOB_HINT_NONE blob flag is
specified, the data content is unrestricted and may
be used for custom server / client combinations.

Blob Flags

The following control flags are specific to the text
control:

Name /
dwFlags constant

Meaning

CTL_BLOB_TEXT
0x00010000

Blob is composed of text
characters in the native text
format (ASCII / Unicode) of
the server.

CTL_BLOB_
HINT_NONE
0x00000000

Data content is unrestricted

CTL_BLOB_
HINT_URL
0x00100000

Data is a zero-terminated
URL. (CTL_BLOB_TEXT
should also be defined.)

Name Descriptor Block

The Name Descriptor Block defines the title text
which describes what the blob data represents. If
a URL launch button is provided, this text will likely
appear on the button. The Descriptor Identifier
used to indicate the Name Descriptor Block is
0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Text control name in ASCII or Unicode

as specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Length Descriptor Block

The Length Descriptor Block specifies the
maximum number of bytes which may be required
to store Blob data. It is required. The Descriptor
Identifier used to indicate the Length Descriptor
Block is 0x6D.

DataSize Contains
uint32 Length size, value 0x00000004
0x04 Maximum number of bytes

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends an ASCII URL
“www.flexipanel.com” blob control block as follows:

Bytes in order of
transmission (hex)

Meaning

2F,00,00,00 Size of fields to follow (47
bytes)

4F,00 Control type, value
0x004F

00,00,11,00 Specifies control flags
CTL_BLOB_HINT_URL
and CTL_BLOB_TEXT

42,6C,6F,62 Control ID 0x626F6C42
13,00,00,00 Control value size = 19
77,77,77,23,66,
6C,65,78,69,70,
61,6E,65,6C,23,
62,6F,6D,00

Control value
“www.flexipanel.com” in
zero terminated ASCII

02,00,00,00 1 descriptor identifier
follows, 1 byte long

5A Descriptor identifier:
Name

08,00,00,00 Size of name descriptor
data in bytes

42,6C,6F,62,00 Text “Blob” in ASCII

Flies Control Block

The Flies Control allows files to be transferred
between server and client. It is intended primarily
for the customized transfer of data between
specific servers. It may also be used to pass web

Page 32 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

pages and files (e.g. images) to a client. The client
should then, if able, provide a button which
launches a web browser to display the files as a
web page.

The Files control differs from the Blob control in
that the data is transferred on request only. The
Control Update From Client and Control Update
From Server messages are used to request the
files. The files are actually transferred in the Files
From Server and Files From Client messages.

If a server provides a files control it does not need
to be able to accept files. If it can’t, it simply never
requests them. While the mechanism exists to
send files from client to server within in the
protocol, this has not actually been implemented
on any clients or servers because a specific need
has not yet arisen.

A client is not required to support the Files control
but must continue to function without error if it
receives one.

A typical use of the files control is to serve up web
pages locally where an internet cannot be
guaranteed. For example, a product’s entire
instruction manual may be pre-loaded with the
product and uploaded on demand.

The Files Control Block was implemented in
protocol version 2.0 and remains current. Each
control block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0046
uint32 Generic control flags plus Files Flags

described below
uint32 Control Unique ID
uint32 Control Value Size = 0
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Files Value

The files values has zero size since the files are
transferred on request only.

The client uses the Control Update From Client to
indicate that it wishes the files to be transferred.

The server uses the Control Update From Server
to indicate that it wishes the files to be transferred.
The value block is empty.

Files Flags

The following control flags are specific to the text
control:

Name /
dwFlags constant

Meaning

CTL_FILE_
HINT_NONE
0x00000000

Files are completely
undefined for use with
custom server / client
combinations

CTL_FILE_
HINT_HTML
0x00100000

Files are acceptable to a
browser.

If CTL_FILE_HINT_HTML is specified, the files
should all be stored in the same directory and then
a web browser should be directed to the first file.
In this way, the server can serve up web pages
locally without the need for an internet connection.
The first file serves as the home page. The other
files may be linked web pages or other supporting
files such as images.

Name Descriptor Block

The Name Descriptor Block defines the title text
which describes what the files data represents. If
a browser launch button is provided, this text will
likely appear on the button. The Descriptor
Identifier used to indicate the Name Descriptor
Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Text control name in ASCII or Unicode

as specified in message header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Page 33 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Color Descriptor Block

The Color Descriptor block requests coloring for
the control. The server is not required to request a
color. Not all clients can provide colors. The
Descriptor Identifier used to indicate the Color
Descriptor Block is 0x63.

DataSize Contains
uint32 Color size, value 0x00000004
0x04 Microsoft RGB value 0x00BBGGRR.

Worked example

A server sends a files control with the ASCII name
“Instructions” as follows:

Bytes in order of
transmission (hex)

Meaning

23,00,00,00 Size of fields to follow (35
bytes)

46,00 Control type, value
0x0046

00,00,10,00

Specifies control flag
CTL_FILE_HINT_HTML

46,69,6C,65 Control ID 0x656C6946
00,00,00,00 Control value size = 0
02,00,00,00 1 descriptor identifier

follows, 1 byte long
5A Descriptor identifier:

Name
0C,00,00,00 Size of name descriptor

data in bytes
49,6E,73,74,75,
63,74,69,6F,6E,
73,00

Text “Instructions” in
ASCII

Image Control Block

The Image Control Block stores a color image. It
could be used to represent a company logo and,
on some clients, may be clickable. A client’s ability
to render an image may be limited.

The Image 3.0 and remains current. The control
block consists of:

DataSize Contains
uint32 Total size of all fields in the control

block except this field but including all
descriptor fields, in bytes

uint16 Control Type, value 0x0049
uint32 Generic control flags plus Latch Flags

described below
uint32 Control Unique ID
uint32 Control Value Size, value ImgSz
ImgSz Image, BMP or GIF format
uint32 Size nDsc of Control Descriptor

Header field, in bytes
nDsc Control Descriptor Header, one byte

per Descriptor Block to follow. Each
byte is a Descriptor Identifier that
indicates the contents of the
Descriptor Block. Descriptor Blocks
follow in the same order as their
identifiers

then nDsc Descriptor Blocks

Image Value

The image value format depends on the image
format flag; currently only CTL_IMG_FMT_BMP and
CTL_IMG_FMT_GIF are defined. The
CTL_IMG_FMT_BMP format is the standard
Microsoft BMP file format. The
CTL_IMG_FMT_GIF format is the standard
Compuserve GIF file format.

CTL_IMG_FMT_BMP images are not compressed
but are easiest for server or client to modify.

Image Flags

The following control flags are specific to the
image control:

Name /
dwFlags constant

Meaning

CTL_IMG_FMT_BMP
0x00100000

Data is in uncompressed
BMP format

CTL_IMG_FMT_GIF
0x00200000

Data is in compressed GIF
format

CTL_IMG_
CLICK_MSG
0x00010000

A client update should be
generated if the user clicks
on the control; the image
cannot be modifiable

CTL_IMG_
MODIFIABLE
0x00020000

The control is modifiable by
the client

Page 34 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Name Descriptor Block

The Name Descriptor Block defines the title text
that describes what the image represents. The
Descriptor Identifier used to indicate the Name
Descriptor Block is 0x5A.

DataSize Contains
uint32 Size nNam of Name in bytes
nNam Image control name in ASCII or

Unicode as specified in message
header.

The name may or may not contain a zero
terminator. If it does not, its length should be
assumed to be nNam.

Color Descriptor Block

Any color descriptor block is ignored.

Worked example

A server sends a 0x1000 byte GIF pixel image
with no name as follows:

Bytes in order of
transmission (hex)

Meaning

12,10,00,00 Size of fields to follow
(0x1012 bytes)

42,00 Control type, value 0x0049
00,00,21,00 Specifies control flags

CTL_IMG_FMT_GIF and
CTL_IMG_CLICK_MSG.

49,4D,47,00 Control ID 0x00474D49
00,10,00,00 Control value size 0x1000
(0x1000 bytes) GIF Image
00,00,00,00 0 descriptor identifiers

follow

Worked example – entire message

The following New Control Panel From Server
message sends a latch control (ASCII form) and a
number control.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
06,00 New Control Panel message

ID
00,00 Flags – none
02,00,00,00 2 control blocks follow
1E,00,00,00 Size of latch control block
42,00 Control type, value 0x0042
00,00,00,00 Control flags – none
54,53,52,00 Control ID 0x00525354
01,00,00,00 Control value size = 1
00 Control value (off)
03,00,00,00 1 descriptor identifier follows
5A Descriptor identifiers: Name
0E,00,00,00 Size of name descriptor data

in bytes
4C,61,74,63,
68,00

Text “Latch” in ASCII Radio 1

3C,00,00,00 Size of number control block
4E,00 Control type, value 0x004E
0D,00,13,00 Specifies control flags

CTL_NUM_MODIFIABLE,
CTL_NUM_MIN, and
CTL_NUM_FIXEDPOINT

54,00,00,00 Control ID 0x00000054
08,00,00,00 Control value size = 4
94,01,00,00 Control value 404
05,00,00,00 5 descriptor identifiers follow,

1 byte each
5A,6E,64,6D,
63

Descriptor identifiers: Name,
Minimum, Decimals,
Mantissa, Color

03,00,00,00 Size of name descriptor data
in bytes

4E,75,6D Text “Num” in ASCII
04,00,00,00 Size of minimum in bytes
00,00,00,00 Minimum value
01,00,00,00 Size of decimals in bytes
02 Decimals value
01,00,00,00 Size of mantissa in bytes
FE Mantissa value (-2)
04,00,00,00 Size of color descriptor data

in bytes

Page 35 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

FF,00,00,00 Bright red latch requested

Page 36 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Control Update From Client
The Control Update From Client informs the server
when the client is attempting to modify a control’s
value.

The Control Update From Client message is sent
whenever the user modifies a control. Non-
modifiable controls such as the matrix control do
not send this message. To be hack-proof, the
server should also verify that the client is permitted
to modify a value before processing this message.
This means verifying that:

• The control ID is valid.

• The new data is valid.

• The control is modifiable.

• The control is visible. (This is important, since
a client may attempt to modify a control which
is no longer being displayed is protected by a
locked password.)

The Control Update From Client message was
implemented in protocol version 2.0 and remains
current.

The message starts with a header with message
constant 0x0007. The body that follows will vary
depending on the controls being modified. The
general format is:

DataSize Contains
uint32 number nCtl of Client Update Blocks

to follow
then nCtl Client Update Blocks

Each Client Update Block contains new data for an
updated control. Only those controls which have
been modified need to be transmitted. The
general format is:

DataSize Contains
uint32 Control ID
uint32 Size sCUpdate of the data to follow
sCUpdate New control data

The control ID must be used to identify the type of
control and therefore the control data format. The
specific format for each control will now be
described.

Button Client Update Block

The Button Client Update Block indicates that the
button has been pressed. It was implemented in
protocol version 2.0 and remains current.

Each button client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000001
0x01 Control data, value ignored

Sending the message indicates that the button has
been pressed. The control data value is ignored.

Text Client Update Block

The Text Client Update Block was implemented in
protocol version 2.0 and remains current. Only
modifiable text controls may send client update
messages.

Each text client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size szLen of the data to follow

(bytes)
szLen New text data

The new text data should be ASCII or Unicode
according to the text format specified by the server.
The data sent must not be longer than the length
specified in the original Text Control Block. If the
text string is shorter than the maximum length, a
zero terminator must also be included.

Latch Client Update Block

The Latch Client Update Block indicates that the
latch control has been modified. It was
implemented in protocol version 2.0 and remains
current. If the control is part of a radio group, it is
the responsibility of the client to send correct client
update blocks for all latch controls in the

Each latch client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

Page 37 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

0x00000001
0x01 New control data, value 0xFF for on

and 0x00 for off.

Section Client Update Block

The Section Client Update Block indicates that the
section control has been opened or closed. It was
implemented in protocol version 2.0 and remains
current.

A change of state of a section control would
usually result in the server sending a New Control
Panel From Server message; however, it entirely
up to the server which controls are displayed in
each state.

Each section client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000001
0x01 New control data, value 0xFF for open

and 0x00 for closed.

Date-Time Client Update Block

The Date-Time Client Update Block indicates that
a date-time control has been modified. It was
implemented in protocol version 2.0 and remains
current.

It is important that the server ignore those fields
which are specified as non-modifiable, since the
client’s Date-Time controls may not be able to
constrain the fields which are modified.

Each date-time client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000008
0x08 New control data, as detailed below.

The 8-byte Date-Time value consists of the
following fields:

Datatype Contains Range
byte Second 0 – 59

byte Minute 0 – 59
byte Hour 0 – 23
byte Date 1 – 31
Byte

Day of week 0 – 6 Sunday to
Saturday respectively
7 = Unknown

byte Month 1 – 12
uint16 Year 0 – 65535

The Date-Time control is a little unusual in that
both the server and client may wish to update the
control at once. The situation arises because a
real-time clock date-time control will be updated by
the server every second. At the same time, the
client may wish to set the clock time. Client
software needs to ignore server updates while the
client is in the process of modifying the value: real-
time clock date-times controls should be tested
when designing a FlexiPanel client.

Number Client Update Block

The Number Client Update Block indicates that a
number control has been modified. It should only
be sent for modifiable number controls. It was
implemented in protocol version 2.0 and remains
current.

A mantissa feature provides decimal shifting
function for data display on the client. Client
Update Block data, however, should contain the
underlying 4-byte signed integer value. If
maximum or minimum values have been specified,
the server must verify that the new value is within
range.

Each number client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000004
0x04 New control data (4-byte signed

integer).

Matrix Client Update Block

The Matrix Control is not modifiable by the client
and no matrix client update message should be
sent.

Page 38 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Password Client Update Block

The Password Client Update Block transmits a
password that the user enters, and, optionally a
new password. It was implemented in protocol
version 2.0 and remains current.

The server verifies the password and takes the
following actions:

• If the password is correct, the state of the
password control is set to unlocked.

• If the password is correct and the control is
modifiable and the new password is not a
zero-length string, the password is changed to
the new password.

• If the password is incorrect or a zero-length
string, the state of the password control is set
to locked.

Passwords provide a security function whose
primary use is to prevent unwanted access to a
user interface. A change of state of a password
control would usually result in the server sending a
New Control Panel From Server message;
however, it entirely up to the server what it does.

Each password client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000044
0x44 Password entered by user, or zero-

terminated string to lock control.
0x44 New password entered by user, or

zero-terminated string if no change.

Note:

• The client cannot change the state of the
password control directly. It can only do so by
transmitting a password and the server
verifying it to be correct. The server never
transmits passwords.

• The password is only changed if the correct
old password is sent in the same message
and if the CTL_PWD_MODIFIABLE flag is set.
A password control may have non-modifiable
‘master’ passwords, but that is up to the
server.

• Some client devices (cellphones) can only
enter the digits 0-9 in passwords.

• In ASCII based systems, the maximum
password length is 33 characters. In Unicode
systems, it is 16 characters. (Zero terminator
not included.)

List Client Update Block

The List Client Update Block indicates that a list
control has been modified. It was implemented in
protocol version 2.0 and remains current.

Each list client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000004
0x04 New control data (4-byte signed

integer).

Message Client Update Block

From version 3.0, a message control may send a
response indicating which button was pressed. It
must not be sent to a server with version number
below 3.0 or if the CTL_RESP_NONE flag was
specified.

Each message client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000001
0x01 Message response value.

The message value is a single byte, representing
the one-based index number of the button which
was pressed. For example, if the message box
flag CTL_RESP_YESNOCANCEL, the index values
are 1 for Yes, 2 for No and 3 for Cancel. The
response may be 0xFF, meaning that the client
was not able to obtain an answer (usually because
the client does not support message responses).

Page 39 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Blob Client Update Block

If the CTL_BLOB_HINT_URL flag is specified, the
client is not expected to modify the Blob value and
this message should never be sent; it is intended
for custom server / client combinations and its
usage is undefined. The Blob Client Update Block
was implemented in protocol version 2.0 and
remains current.

Each blob client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size sLen of the data to follow (bytes)
sLen New blob data

The new blob data must not be longer than the
length specified in the original Blob Control Block.

Flies Client Update Block

The Flies Client Update block is transmitted to
request that the files are sent from the server.
Files themselves are sent in a separate Files From
Server message. The block contains no updated
control data. The Files Client Update Block was
implemented in protocol version 2.0 and remains
current.

Each files client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000000

Worked example

The following Control Update From Client
message sends updated values for a latch control
and a number control.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0

01,00 Backwardly compatible to 2.0
07,00 Control Update From Client

message ID
00,00 Flags – none
02,00,00,00 2 control blocks follow
54,53,52,00 Latch control ID
01,00,00,00 Control value size = 1
FF Control value (on)
54,00,00,00 Number Control ID
08,00,00,00 Control value size = 4
96,01,00,00 Control value 406

Image Client Update Block

The Image Client Update Block comes in two
forms. Either it informs the server that the user
has clicked on the image (if the
CTL_IMG_CLICK_MSG flag was set) or the images
has been modified and the new value is being sent
(if the CTL_IMG_MODIFIABLE flag was set). It
was implemented in protocol version 3.0 and
remains current.

If the CTL_IMG_CLICK_MSG flag was set, the
image client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000000

If the CTL_IMG_MODIFIABLE flag was set, the
image client update block consists of:

DataSize Contains
uint32 Control ID
uint32 Control Value Size, value ImgSz =

xSize x ySize x 3
ImgSz xSize x ySize RGB triplets

Page 40 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Control Update From Server
The Control Update From Server informs the client
when the server is attempting to modify a control’s
value.

The Control Update From Server message is sent
whenever the server modifies a control. Controls
specified as non-modifiable may be modified by
the server at any time; the flag pertains to whether
the client is allowed to modify the value.

The Control Update From Server message was
implemented in protocol version 2.0 and remains
current.

The message starts with a header with message
constant 0x0009. The body that follows will vary
depending on the controls being updated. The
general format is:

DataSize Contains
uint32 number nCtl of Server Update Blocks

to follow
then nCtl Server Update Blocks

Each Server Update Block contains new data for
an updated control. Only those controls which
have been modified need to be transmitted. The
general format is:

DataSize Contains
uint32 Control ID
uint32 Size sSUpdate of the data to follow
sSUpdate New control data

The control ID must be used to identify the type of
control and therefore the control data format. The
specific format for each control will now be
described.

Button Server Update Block

It would not make sense for the server to tell the
client that the button had been pressed and so a
button server update block should never be sent

Text Server Update Block

The Text Server Update Block was implemented in
protocol version 2.0 and remains current.

Each text server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size szLen of the data to follow

(bytes)
szLen New text data

The new text data should be ASCII or Unicode
according to the text format specified in the original
New Control Panel From Server message. The
data sent must not be longer than the length
specified in the original Text Control Block. If the
text string is shorter than the maximum length, a
zero terminator must also be included.

Latch Server Update Block

The Latch Server Update Block changes the state
of a latch control. It was implemented in protocol
version 2.0 and remains current.

Each latch server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000001
0x01 New control data, value 0xFF for on

and 0x00 for off.

If the latch was part of a radio group, the server
must correctly set the state of all the controls in the
radio group.

Section Server Update Block

The Section Server Update Block changes the
state of a section control. It was implemented in
protocol version 2.0 and remains current.

A change of state of a section control would
usually result in the server sending a New Control
Panel From Server message; however, it entirely
up to the server which controls are displayed in
each state.

Each section server update block consists of:

DataSize Contains
uint32 Control ID
uint32

Size of the data to follow, value
0x00000001

0x01 New control data, value 0xFF for open
and 0x00 for closed.

Page 41 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Date-Time Server Update Block

The Date-Time Server Update Block indicates that
a date-time control has been modified. It was
implemented in protocol version 2.0 and remains
current.

If a user is in the process of updating the date-time
control, the client may ignore this message and
give priority to the value being entered by the user.

Each date-time server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000008
0x08 New control data, as detailed below.

The 8-byte Date-Time value consists of the
following fields:

Datatype Contains Range
byte Second 0 – 59
byte Minute 0 – 59
byte Hour 0 – 23
byte Date 1 – 31
Byte

Day of week 0 – 6 Sunday to
Saturday respectively
7 = Unknown

byte Month 1 – 12
uint16 Year 0 – 65535

Number Server Update Block

The Number Server Update Block indicates that a
number control has been modified. It was
implemented in protocol version 2.0 and remains
current.

A mantissa feature provides decimal shifting
function for data display on the client. Server
Update Block data, however, should contain the
underlying 4-byte signed integer value.

Each number server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000004
0x04 New control data (4-byte signed

integer).

Matrix Server Update Block

The Matrix Server Update Block updates a entire
data matrix. It was implemented in protocol
version 2.0 and remains current.

Matrix Server Update Block

The matrix server update block updates all the
data in the matrix and consists of:

DataSize Contains
uint32 Control ID
uint32 Size nDat of the matrix value to follow
nDat Entire matrix value

The nDat is defined by the number of rows and
columns and the type of data required to represent
the X axis. The entire matrix value comprises of
the following fields:

• The matrix of integers ‘unwrapped’ into a linear
array. All the values in the first column come
first, then the next column, etc. Each column
of values is known as a Column Sub-Array.
Each integer will be signed but may be 1- 2- or
4-byte depending on the matrix flags.

• If the matrix is of the List or Labels matrix type,
no X-axis data is sent.

• If the matrix is of the XY matrix type, the X-axis
values are sent as an array of signed integers
which may be 1- 2- or 4-byte depending on the
matrix flags.

• If the matrix is of the Date-Time matrix type,
the X-axis Date-Time values are sent as an
array of 8-byte Date-Time values (see Date-
Time Control Block, page 16).

• An four byte signed integer NumValid
indicating the number of rows of the matrix
which contain valid data and whether it must
be interpreted as an offset circular array:

- If NumValid is zero or positive, the first
NumValid rows contain valid data and
the rest are unspecified.

- If NumValid is negative, all rows contain
valid data. The row elements of the

Page 42 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

matrix have been offset and row R of the
matrix is located at Column Sub-Array
element offset E, where

 E = (R – NumValid) % NumRows

and NumRows is the total number of rows
in the matrix. E and R are zero-based; %
is the modulus operator; NumValid may
be no more negative than –NumRows. If
XY style of Date-Time style, this offset
applies to the row data, too. (It does not
apply to row labels in the Labels style.)

Password Server Update Block

The Password Server Update Block indicates that
a password control has changed state. This may
be because the server chose to, or in response to
a correct or incorrect password being sent by the
client. It was implemented in protocol version 2.0
and remains current.

Each password server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000001
0x01 New control state, being 0x00 for

locked and 0xFF for unlocked.

List Server Update Block

The List Server Update Block indicates that a list
control has been modified. It was implemented in
protocol version 2.0 and remains current.

Each list server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000004
0x04 New control data (4-byte signed

integer).

Message Server Update Block

A server uses the server update block message to
change the message box’s text. The message is
shown, and the icons and buttons modified, using
the Control Properties Update From Server page
53.

The Message Server Update Block was
implemented in protocol version 2.0 and remains
current.

Each message server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size szLen of the new text to follow

(bytes)
szLen New text

The new text message should be ASCII or
Unicode according to the format specified in the
original New Control Panel From Server message.
The data sent must not be longer than the length
specified in the original Matrix Control Block. If the
text string is shorter than the maximum length, a
zero terminator must also be included.

Blob Server Update Block

The Blob Server Update Block was implemented in
protocol version 2.0 and remains current.

Each blob server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size sLen of the data to follow (bytes)
sLen New blob data

The new blob data must not be longer than the
length specified in the original Blob Control Block.
If the CTL_BLOB_HINT_URL flag is specified, the
new blob data is a new URL.

Flies Server Update Block

The Flies Server Update block is transmitted to
request that the files are sent from the client. Files
themselves are sent in a separate Files From
Client message. The block contains no updated
control data. The Files Server Update Block was

Page 43 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

implemented in protocol version 2.0 and remains
current.

Each files server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Size of the data to follow, value

0x00000000

Image Server Update Block

The Image Server Update Block indicates the
image has been modified and the new value is
being sent. It was implemented in protocol version
3.0 and remains current.

Each image server update block consists of:

DataSize Contains
uint32 Control ID
uint32 Control Value Size, value ImgSz =

xSize x ySize x 3
ImgSz xSize x ySize RGB triplets

Worked example

The following Control Update From Server
message sends updated values for a latch control
and a number control.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
09,00 Control Update From Server

message ID
00,00 Flags – none
02,00,00,00 2 control blocks follow
54,53,52,00 Latch control ID
01,00,00,00 Control value size = 1
00 Control value (off)
54,00,00,00 Number Control ID
08,00,00,00 Control value size = 4

93,01,00,00 Control value 403

Page 44 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Control Partial Update From
Server
The Control Partial Update From Server informs
the client when the server is attempting to modify
an incomplete portion of a control’s value.

The Control Update From Server message was
implemented in protocol version 3.0 and remains
current. It is currently only defined for matrix
controls.

The message starts with a header with message
constant 0x0015. The body that follows will vary
depending on the controls being updated. The
general format is:

DataSize Contains
uint32 number nCtl of Server Partial Update

Blocks to follow
then nCtl Server Partial Update Blocks

Each Server Partial Update Block contains new
data for an updated control. Only those controls
which have been modified need to be transmitted.
The general format is:

DataSize Contains
uint32 Control ID
uint32 Size sSUpdate of the data to follow
sSUpdate New control data

The control ID must be used to identify the type of
control and therefore the control data format. The
specific format for each control will now be
described.

Matrix Server Partial Update Block

The Matrix Partial Server Update Block updates a
single row of the matrix.

The matrix server partial update block updates a
single row of the matrix and consists of:

DataSize Contains
uint32 Control ID
uint32 Size nDat of the matrix value to follow
nDat Single Row matrix value

The single row matrix value comprises of the
following fields:

• The single row of integers as a linear array.
The row value from the first column comes
first, then the next column, etc. Each integer
will be signed but may be 1- 2- or 4-byte
depending on the matrix flags.

• If the matrix is of the list or labels matrix type,
no X-axis data is sent.

• If the matrix is of the XY matrix type, the X-axis
value is sent as a signed integers which may
be 1- 2- or 4-byte depending on the matrix
flags.

• If the matrix is of the Date-Time matrix type,
the X-axis Date-Time value is sent as an 8-
byte Date-Time value (see Date-Time Control
Block, page 16).

• An four byte signed integer NumValid
indicating the number of rows of the resulting
matrix which contain valid data and whether it
must be interpreted as an offset circular array:

- If NumValid is zero or positive, the first
NumValid rows contain valid data and
the rest are unspecified.

- If NumValid is negative, all rows contain
valid data. The row elements of the
matrix have been offset and row R of the
matrix is located at Column Sub-Array
element E, where

 E = (R – NumValid) % NumRows

and NumRows is the total number of rows
in the matrix. E and R are zero-based; %
is the modulus operator; NumValid may
be no more negative than –NumRows. If
XY style of Date-Time style, this offset
applies to the row data, too.

• A four byte signed integer R indicates which
row is to be overwritten with the new row
values. If NumValid is negative, this value is
the Column Sub-Array element E to be
updated.

Worked example

The following Control Partial Update From Server
message sends an updates row of data to an XY

Page 45 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

matrix control consisting of a 2-byte row X value
and three 1-byte cell values.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
02,00 Backwardly compatible to 3.0
15,00 Control Partial Update From

Server message ID
00,00 Flags – none
01,00,00,00 1 control block follow
54,53,52,00 Matrix control ID
0D,00,00,00 Control value size = 13
01,02,03 Matrix cell values
04,05 Matrix X values
04,00,00,00 Number of valid rows is 4
03,00,00,00 Row to update is 3

Page 46 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Ping From Server
Bluetooth connections may be fail, e.g. if the client
or server loses power or go out of range. Ping
functionality is provided in order to detect this
condition and treat it in a fail-safe manner.

If implemented by the server, and if supported by
the client (as indicated by its header flags in earlier
messages), the server regularly sends Ping From
Server message, say, once every five seconds.
(More frequently than this is problematic because
the client may be busy or slow.)

In response to a Ping From Server message, the
client should send a Ping Reply From Client
message. If the time comes for a server to send a
Ping From Server message and it finds that a Ping
Reply From Client message has not been received
in response to the previous Ping From Server
message, it should conclude that the link is lost
and enter a fail-safe disconnected state and await
a new Greetings From Client message.

The Ping From Server message is sent as a
header with message constant 0x0008 and no
body. It was implemented in protocol version 2.0
and remains current.

Worked example

A server sends a Unicode Ping From Server as
follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
08,00 Ping From Server message

ID
01,00 Flags – Unicode flag only

Page 47 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Ping From Client
Bluetooth connections may be fail, e.g. if the client
or server loses power or go out of range. Ping
functionality is provided in order to detect this
condition and treat it in a fail-safe manner.

If implemented by the client, and if supported by
the server (as indicated by its header flags in
earlier messages), the client regularly sends Ping
From Server message, say, once every five
seconds. (More frequently than this is problematic
because the server may be busy or slow.)

In response to a Ping From Client message, the
server should send a Ping Reply From Server
message. If the time comes for a client to send a
Ping From Client message and it finds that a Ping
Reply From Server message has not been
received in response to the previous Ping From
Client message, it should conclude that the link is
lost and enter indicate this state to the user,
offering the option to reconnect.

The Ping From Client message is sent as a header
with message constant 0x000A and no body. It
was implemented in protocol version 2.0 and
remains current.

Worked example

A server sends a Unicode Ping From Client as
follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0A,00 Ping From Client message ID
01,00 Flags – Unicode flag only

Page 48 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Ping Reply From Server
The server should send a Ping Reply From Server
message promptly in response to a Ping From
Client message.

The Ping Reply From Server message is sent as a
header with message constant 0x000B and no
body. It was implemented in protocol version 2.0
and remains current.

Worked example

A server sends a Unicode Ping Reply from Server
as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0B,00 Ping Reply From Server

message ID
01,00 Flags – Unicode flag only

Page 49 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Ping Reply From Client
The client should send a Ping Reply From Client
message promptly in response to a Ping From
Server message.

The Ping Reply From Client message is sent as a
header with message constant 0x000C and no
body. It was implemented in protocol version 2.0
and remains current.

Worked example

A server sends a Unicode Ping Reply From Client
as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0C,00 Ping Reply From Client

message ID
01,00 Flags – Unicode flag only

Page 50 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Acknowledge From Server
The server should send an Acknowledge From
Server message promptly in response to a
message where the Acknowledge Requested flag
was set in the header. Only the following message
will be acknowledged: Update Control From Client.

The Acknowledge From Server message is sent
as a header with message constant 0x000D and
no body. It was implemented in protocol version
2.0 and remains current.

Worked example

A server sends a Unicode Acknowledge from
Server as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0D,00 Acknowledge message ID
01,00 Flags – Unicode flag only

Page 51 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Acknowledge From Client
The client should send an Acknowledge From
Client message promptly in response to a
message where the Acknowledge Requested flag
was set in the header. Only the following
messages will be acknowledged: Update Control
From Server, New Control Panel From Server.

The Acknowledge From Client message is sent as
a header with message constant 0x000E and no
body. It was implemented in protocol version 2.0
and remains current.

Worked example

A server sends a Unicode Acknowledge from
Client as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0E,00 Acknowledge message ID
01,00 Flags – Unicode flag only

Page 52 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

New Server
In some systems it is possible that a client may
connect to the server Bluetooth layer before the
FlexiPanel service has been initiated on the
server. In this condition, the original Greeting
From Client will have been lost and the server will
not know it has a client connected.

If the system architecture is such that this problem
might arise, the server may send a New Control
Panel From Server message when it first
initializes.

The New Control Panel From Server message is
sent as a header with message constant 0x000F
and no body.

In response to a New Control Panel From Server
message, the client should reply with a Greetings
From Client message. Thus the server knows it is
connected to a client.

The New Server message makes the FlexiPanel
protocol robust to variations in boot-up sequence.
It may result in two Greetings From Client
messages being received by the server.

The New Server message was implemented in
protocol version 2.2 and remains current.

Worked example

A server sends a Unicode New Server message
as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
0F,00 New Server message ID
01,00 Flags – Unicode flag only

Page 53 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Control Properties Update
From Server
The Control Properties Update From Server
message allows the server to update certain flags
on a control and also the color of the control. The
flags which may be modified are:

• CTL_INVISIBLE may change to hide or show
a control.

• CTL_ENSUREVISIBLE may be set to request
that a control be brought into view.

• CTL_MSG_ICON_ flags.

• CTL_MSG_RESP_ flags.

• If the color is to be changed, the CTL_
COLCHANGED flag should be set; otherwise
the color value will be ignored by the client.

In particular, the message is sent with the
CTL_INVISIBLE clear in order to show the
message box of a message control. (It does not
need to be reset to invisible afterwards.)

The Control Properties Update From Server
message was implemented in protocol version 2.0
and remains current.

The message starts with a header with message
constant 0x0010. The body size that follows will
vary depending on the number of controls to be
updated. The general format is:

DataSize Contains
uint32 number nCtl of Control Blocks to

follow
then nCtl Control Properties Blocks

Control Properties Block

Currently the control properties block is the same
for all types of control:

DataSize Contains
uint32 Control Unique ID
uint32 Total size of all fields to follow, value

0x00000008
uint32 Control Flags as discussed above
uint32 Microsoft RGB value 0x00BBGGRR.

Worked example

The following Control Properties Update From
Server message sends updated properties for a
latch control and a message control.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
07,00 Control Properties Update

From Server message ID
00,00 Flags – none
02,00,00,00 2 control properties blocks

follow
54,53,52,00 Latch control ID
08,00,00,00 Control properties size = 8
40,00,00,00 Flags CTL_COLCHANGED
FF,00,00,00 Set Color to Red
4D,73,67,00 Message Control ID
08,00,00,00 Control properties size = 8
00,00,20,00 Flag CTL_MSG_RESP_

OKCANCEL. (Invisible flag
not set, so message will be
shown.)

00,00,00,00 Color value (ignored)

Page 54 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Files From Server
The Files From Server message sends the files of
a file control to a client. It should be sent in
response to a Control Update From Client
message relating to the files control. A client
which does not wish to support this control simply
never sends the related Control Update From
Client message.

The Files From Server message was implemented
in protocol version 2.2 and remains current.

Whether or not the files sent replace any existing
files (e.g. the files sent in a previous Files From
Server message) is up to the server.

The message starts with a header with message
constant 0x0011. The body size that follows will
vary depending on the number and size of the files
toi be sent. The general format is:

DataSize Contains
uint32 Control ID of the Files control
uint32 number nFiles of files to be sent
then nFiles File Blocks

Files Block

A files block is sent for each file being sent:

DataSize Contains
uint32 Length szlName of file name field to

follow
szlName File name with zero terminator
uint32 Size of file data

lData File data

The file name should not include a path since
nothing can be assumed about the file system on
the client device.

If CTL_FILE_HINT_HTML is specified, the files
should all be stored in the same directory and then
a web browser should be directed to the first file.
In this way, the server can serve up web pages
locally without the need for an internet connection.
The first file serves as the home page. The other
files may be linked web pages or other supporting
files such as images.

Worked example

The following Files From Server message sends
two files index.htm (256 bytes) and image.jpg
(1024 bytes). If the CTL_FILE_HINT_HTML flag
was originally specified for the control, the client
would display the file index.htm in its web
browser; image.jpg might well reference
image.jpg which it would expect to find in the
same directory.

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
11,00 Files From Server message

ID
00,00 Flags – none
46,69,6C,65 Control ID 0x656C6946
02,00,00,00 Number of file blocks = 2
0A,00,00,00 Length of file name 1
69,6E,64,65,
78,2E,68,74,
6D,00

File name 1, zero terminated

00,01,00,00 File 1 size
(256 bytes) File 1 data
0A,00,00,00 Length of file name 2
69,6D,61,67,
65,2E,6A,70,
67,00

File name 2, zero terminated

00,04,00,00 File 2 size
(1024 bytes) File 2 data

Page 55 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Files From Client
The Files From Client message sends the files of a
file control to a server. It should be sent in
response to a Control Update From Server
message relating to the files control. A server
which does not wish to support this control simply
never sends the related Control Update From
Server message.

Whether or not the files sent replace any existing
files (e.g. the files sent in a Files From Server
message) is up to the server.

The Files From Client message was implemented
in protocol version 2.2 and remains current.

The message starts with a header with message
constant 0x0014. The body size that follows will
vary depending on the number and size of the files
toi be sent. The general format is:

DataSize Contains
uint32 Control ID of the Files control
uint32 number nFiles of files to be sent
then nFiles File Blocks

Files Block

A files block is sent for each file being sent:

DataSize Contains
uint32 Length szlName of file name field to

follow
szlName File name with zero terminator
uint32 Size of file data

lData File data

The file name should not include a path since
nothing can be assumed about the file system on
the client device.

The CTL_FILE_HINT_HTML flag is unlikely to
result in the files being displayed; a more typical
usage of the message in this case would be to
update the web pages which are subsequently
displayed in Files From Server messages.

Worked example

The following Files From Client message sends
two files index.htm (256 bytes) and image.jpg
(1024 bytes).

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
14,00 Files From Server message

ID
00,00 Flags – none
46,69,6C,65 Control ID 0x656C6946
02,00,00,00 Number of file blocks = 2
0A,00,00,00 Length of file name 1
69,6E,64,65,
78,2E,68,74,
6D,00

File name 1, zero terminated

00,01,00,00 File 1 size
(256 bytes) File 1 data
0A,00,00,00 Length of file name 2
69,6D,61,67,
65,2E,6A,70,
67,00

File name 2, zero terminated

00,04,00,00 File 2 size
(1024 bytes) File 2 data

Page 56 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Profile Request From Client
Client Profiles Overview

The basic FlexiPanel system passes logical
controls which may then be displayed on any
remote client and few assumptions are made
about that client. It might be a Palm-sized PC, but
it could equally be a completely audio
implementation which is accessed by phone.

This approach is very flexible but on its own does
not exploit each platform to its full capability. For
example it does not specify how data is laid out on
a screen or whether a line or bar chart should be
used to display matrix data.

Consequently, a separate mechanism exists to
send an additional, platform-specific profile which
improves the layout of the user interface each
specific client devices. Profile data is strictly
optional – all clients must provide useable user
interfaces given the basic FlexiPanel data.

Profile data is stored as groups of four 4-byte
integers on the server: Device ID, Control ID,
Attribute, Value.

The Device ID identifies the client type. The
following are currently defined:

Value (hex) Client platform
0x00000100 Pocket PC
0x00000200 Windows PC
0x00000300 Smartphone

Java phone client and Palm client do not currently
exploit profile data. If you develop a client platform
and wish to have a Device ID allocated, contact
us.

The Control ID stores the control ID to which the
attribute and its value apply. If the attribute is not
specific to a particular control, the value
0x00000000 is specified.

The Attribute is the feature of the control which is
specified by the associated Value. If the Control
ID is nonzero, its interpretation will be specific to
the type of control and so must be interpreted with
reference to the control type.

When a client sends a profile request message,
the server will respond with all the Control ID –
Attribute – Value triplets for that client’s Device ID
type.

The actual profile definitions are client-specific and
not part of the FlexiPanel protocol definition, other
than to specify that they are groups of four 4-byte
integers Device ID, Control ID, Attribute and Value.
The definitions for Pocket PC, Windows and
Smartphones are contained in the following C
header files which are included in the FlexiPanel
Designer developer’s kit:

PocketPCProfiles.h

WindowsProfiles.h

SmartPhoneProfiles.h

Profile Request Message

The Profile Request From Client message asks
the server to send profile data relevant to that
client. If it has such profile data, it will respond
with a Profile Data From Server message.

The Profile Request From Client message is sent
as a header with message constant 0x0012. It
was implemented in protocol version 2.1 and
remains current. The message body is:

DataSize Contains
0x04 Device ID

Worked example

A Windows PC sends a Unicode Profile Request
From Client message as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,02 Serial number
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
12,00 Profile Request message ID
01,00 Flags – Unicode flag only
00,02,00,00 Windows PC Device ID

Page 57 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Profile Data From Server
See the previous section, Profile Request From
Client for an overview of profile data.

The Profile Data From Server message is sent in
response to a Profile Request From Client
message, if the server has profile data relating to
that Device ID type.

The Profile Request From Client message is sent
as a header with message constant 0x0013. It
was implemented in protocol version 2.1 and
remains current. The message body is:

DataSize Contains
uint32 number nProfs of profile blocks to be

sent
then nProfs Profile Blocks

Profile Block

A profile block is sent for each profile group whose
Device ID matches the device ID in sent in the
body of the Profile Request From Client message:

DataSize Contains
uint32 Control ID
uint32 Attribute ID
int32 Value

It is permissible to send the message with a profile
block count nProfs of zero.

Worked example

A server sends a Profile Data From Server
message containing three profile blocks as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,00 Serial number not used
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
13,00 Profile Data message ID
00,00 Flags – None
03,00,00,00 Number of profile blocks = 3
00,00,00,00 Control ID 1 (general feature

not control specific = 0)

00,04,00,00 Attribute 1
WIN_SCREEN_HEIGHT

00,02,00,00 Value 1 (512 pixels)
00,00,00,00 Control ID 2 (general feature

not control specific = 0)
00,08,00,00 Attribute 2

WIN_SCREEN_WIDTH
00,03,00,00 Value 2 (768 pixels)
4C,00,00,00 Control ID 3 (Happens to be

a latch control)
50,01,00,00 Attribute 3 WIN_ATT_STYLE
01,00,00,00 Value 3 WIN_CST_LCH_

CHECKBOX (checkbox style)

Page 58 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Program Device
The client is requesting that the server enter a
product specific field programming mode. All
communication thereafter will be product specific
and will terminate by the server performing a
device reset.

No attempt is made to prevent ‘hacking’ field
programming attempts. This is the responsibility of
the product specific field programming mode.

The Program Device message is sent as a header
with message constant 0x0081 and no body. It
was implemented in protocol version 2.3 and
remains current.

Worked example

A server sends a Unicode Acknowledge from
Client as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,01 Serial number (Pocket PC in
this example)

00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
81,00 Program Device message ID
01,00 Flags – Unicode flag only

Page 59 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Device-Specific Data From
Client
Message

The Device-Specific Data From Client message
sends the data relevant to that client. Servers that
do not know how to process the message should
ignore it.

The Device-Specific Data From Client message is
sent as a header with message constant 0x0082.
It was implemented in protocol version 3.0.00006
and remains current. The message body is:

DataSize Contains
0x04 NumByte Number of bytes in

remainder of message
NumByte Message

Worked example

A custom client sends a Unicode Device-Specific
Data From Client message 12 34 as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,02 Serial number
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
82,00 Profile Request message ID
01,00 Flags – Unicode flag only
02,00,00,00 NumByte = 0x02
12 34 Message 12 34

Page 60 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Device-Specific Data From
Server
Message

The Device-Specific Data From Server message
sends the data relevant to that client. Servers that
do not know how to process the message should
ignore it.

The Device-Specific Data From Server message is
sent as a header with message constant 0x0083.
It was implemented in protocol version 3.0.00006
and remains current. The message body is:

DataSize Contains
0x04 NumByte Number of bytes in

remainder of message
NumByte Message

Worked example

A custom client sends a Unicode Device-Specific
Data From Server message 12 34 as follows:

Bytes in order of
transmission (hex)

Meaning

48,EF,F0,74,
72,EF,E6,66

FlexiPanel identifier

00,02 Serial number
00,00 Checksum not implemented
02,00 Protocol version 3.0
01,00 Backwardly compatible to 2.0
83,00 Profile Request message ID
01,00 Flags – Unicode flag only
02,00,00,00 NumByte = 0x02
12 34 Message 12 34

Page 61 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

FlexiPanel Protocol Revision History
The table below details the evolution of the FlexiPanel protocol. Version numbers indicate back-compatible
changes which are significant enough to merit compliance with the new feature. For example, version 3.0
requires that unrecognized control styles and messages are managed gracefully: to claim compliance with
version 3.0, these features must be supported.

Client-specific profiles features are optional and not listed here.

Version Detail
1.0 Original infrared protocol
2.0 Bluetooth protocol initial release
2.2 Matrix control added
2.3 Name Descriptor expected on all controls for display purposes.
3.0 Unrecognized or unsupported messages, controls and descriptors must be ignored without

fault and user must be aware that client is not providing full service.
3.0 Partial Update From Server message added
3.0 Servers must support authentication
3.0 Message Box can return a value
3.0 Image control added
3.0.00006 Device-specific data messages added

Page 62 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Protocol Errata History
The table below details corrections to this the documentation and when the correction was made.

Date Detail
5-May-05 Profile request from client message body amended
24-Sep-05 Control update from server message constant previously wrong, corrected to 0x0015

Page 63 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Glossary and Notation
Hex Notation

Throughout this document, numbers with an ‘0x’
prefix should be assumed to be in hex. For
example, 0xFF is completely equivalent to decimal
255.

In some partners’ documentation, a ‘$’ prefix is
used in place of an ‘0x’ prefix. ‘$FF’ is equivalent
to ‘0xFF’ and decimal 255.

In some partners’ documentation, a ‘H’ suffix is
used in place of an ‘0x’ prefix. ‘FFH’ is equivalent
to ‘0xFF’ and decimal 255.

Data Types

Data types are C standard data types; no floating
point is used. C standard notation and calling
conventions are assumed. Integers are explicitly
defined as:

bool – unsigned char, zero for false, otherwise true

byte – 8 bit unsigned integer

int16 – 16 bit signed integer

int32 – 32 bit signed integer

signed char – 8 bit signed integer

uint16 – 16 bit unsigned integer

uint32 – 32 bit unsigned integer

unsigned char – 8 bit unsigned integer

word – 16 bit unsigned integer

Glossary

> symbol – Navigation drilldown to a particular
item in a piece of software. A list of phrases
separated by > symbols means: go to the program,
menu or tab indicated by the first phrase, look for
the second phrase and select it, look for the third
phrase and select it, etc, until you find the item at
the end of the list.

Big-Endian – see Endian.

Buffer – A linear region of memory designed for
storing data entering from or departing to a
communications channel.

Circular buffer – A ‘first-in-first-out’ buffer which
wraps around. It has a start pointer indicating
when the next byte to be dispatched (i.e. read or
transmitter) and an end pointer indicating the last
piece of data to be dispatched. The start pointer
advances when its data is dispatched; the end
pointer advances when new data arrives. When
either pointer reaches the end of the buffer it starts
at the beginning again. If the end pointer catches
up with the start pointer, the buffer is full and a
buffer overrun occurs.

<CR> – The ASCII carriage return character 0x0D.

FlexiPanel client – Hardware or software that
creates a control panel when requested to by a
FlexiPanel server.

Endian – Refers to which byte is stores /
transmitted first in multibyte integers. In Little-
Endian format, bytes are in increasing order of
significance, least significant byte first. In Big-
Endian format, bytes are in increasing order of
significance, least significant byte first. In general,
Flexipanel Ltd uses little-endian format, but there
are exceptions.

FlexiPanel server – Hardware or software that
requests a control panel to be created on a
FlexiPanel client.

IC – Integrated Circuit.

KIPS – thousand instruction cycles per second.

<LF> – The ASCII line feed character 0x0A.

Little-Endian – see Endian.

LSB – least significant bit or byte, depending on
context.

MIPS – million instruction cycles per second.

MSB – most significant bit or byte, depending on
context.

OS – Operating System.

Overrun – A circular buffer overruns if an attempt
is add more data to it when it is full (see definition
of circular buffer).

PWM – Pulse Width Modulation.

Underrun – A circular buffer underruns if an
attempt is made to dispatch data from it when it is
empty.

Page 64 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Unicode – Two-byte integer array representing text
characters. ASCII characters keep the same
values in the Unicode character set.

User – The person using the finished product (as
opposed to the Developer).

Zero Terminator – A zero-valued character used to
indicate the end of a string of characters.

Page 65 29-Jan-07 Protocol 3.0 © FlexiPanel Ltd Patents pending www.FlexiPanel.com

Legal Notices
If any of this is not clear, contact FlexiPanel Ltd for
clarification.

General

FlexiPanel technology should not be used in life
critical devices without the permission FlexiPanel
Ltd.

FlexiPanel Ltd makes every effort to ensure, but
cannot warrant, that its products and
documentation are without errors and omissions.
However FlexiPanel Ltd does not accept liability
for consequent loss or injury as a result of using its
products or interpreting its documentation.
FlexiPanel Ltd will not be responsible for any third
party patent infringements arising from the use of
its products.

FlexiPanel Ltd reserves the right to make changes
to its technology and documentation in order to
improve reliability, function or design.

Software Libraries

FlexiPanel Ltd provides software such as the
Toothpick Services library exclusively for use with
products made by FlexiPanel Ltd. It is not
permitted to use the libraries except with products

made by FlexiPanel Ltd. It is not permitted to
reverse engineer the security features designed to
ensure that the library only works with products
made by FlexiPanel Ltd.

FlexiPanel Protocol

The FlexiPanel protocol and the products which
use it are protected by pending patents and
copyright law.

The FlexiPanel protocol allows servers to create
user interfaces on remote clients.

Client software and products are freely
distributable as far as we are concerned and you
can do with them what you like. You can also
freely produce your own client software and
products which use the FlexiPanel protocol.

We make a living from licensing the FlexiPanel
servers and providers of FlexiPanel server
products must pay us an agreed license fee. If
you buy FlexiPanel hardware products from
FlexiPanel Ltd, this license is implicit. You may,
under license, also make your own hardware or
software FlexiPanel server products – contact us
for details.

Contact Details

The FlexiPanel Protocol is owned and designed by FlexiPanel Ltd. For technical support, contact us at:

FlexiPanel

FlexiPanel Ltd
2 Marshall St, 3rd Floor
London W1F 9BB, United Kingdom
www.flexipanel.com
email: support@flexipanel.com

